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Abstract. The aim of the paper was to reconstruct the missing data by applying the 

model which describes variability of sound level in the whole period from 2013 to 

2016. To build the model, the computational intelligence methods, like fuzzy systems, 

or regression trees can be used. The latter approach was applied and we built the 

model with Cubist regression tree software, using equivalent sound levels recorded in 

2013. For the reconstruction of sound level data in short period of time (several days), 

time series values and day_of_week values together should be used in the training 

dataset. For the reconstruction of sound level data in long period of time (several 

months) day_of_week values should be used in the training dataset. 
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1 Introduction  

The work presents the analysis of equivalent sound level [1] data recorded during 

measurements in monitoring stations located at Krakowska Street in Kielce, Poland. 

Krakowska street is a dual-carriageway road, which connects the south-western part of the 

city with the expressway towards Cracow. The monitoring station consists of sound level 

meter and weather station. The microphone for the acoustic pressure measurements is 

mounted at a distance of 4 m from the edge of the road and 4 m above ground level. 

Acoustic measurements were carried out [2] by using SVAN 958A, digital, four-channel, 

class-1, vibration and sound meter. In the research, the ½” prepolarized free field condenser 

microphone MIKROTECH GEFELL MK 250, which has sensitivity of 50 mV/Pa, was 

used together with SV 12L preamplifier. The range of frequencies was 3.5 Hz to 20 kHz, 

and dynamic range was 15–146 dB. The resolution of the signal RMS detector is 0.1 dB. 

The measurements were carried out 24 hours a day. The RMS values of the A sound level 

were registered in the buffer every 1 s and the results were recorded every 60 seconds. 

Based on the measurements that were conducted 24 hours a day, the equivalent sound 

levels were calculated for three time periods: day (6 a.m. to 6 p.m.), evening (6 p.m. to 10 
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p.m.), and night (10 p.m. to 6 a.m.) [3]. The noise pollution (nuisance) due to long-term 

exposure to noise is very often measured by the equivalent sound level (LAeq,T ), expressed 

in (dB), defined as [4] 
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where    is the standardized reference acoustic pressure of 20 µPa. According to the 

ISO standard, this parameter can be determined from [5] 
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where      is the A-weighted acoustic pressure level measured in the measurement 

interval  . The average sound level can be determined as expected value from [6] 
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2 Measurements results  

The data collected at Krakowska Street in 2013 consists of 905 records describing 

equivalent sound level for a particular night (Fig. 1a), evening (Fig. 1b), or day (Fig. 1c). In 

the year 2013 there are missing values [7] for beginning of January, second half of January, 

first half of February, and most part of December. 

When the missing values for a particular night, evening, and day are replaced by 0 dB, 

the calculated LAeq,T values for the whole year are: 63.98 dB (nights), 68.13 dB (evenings), 

and 69.50 dB (days). When records which originally contained missing values are omitted, 

the equivalent sound levels are: 64.80 dB, 68.95, and 70.35 dB respectively. The correct 

calculation of LAeq,T values requires the reconstruction of the missing data records. 

 

 

Fig. 1a. Krakowska Street, 2013, equivalent sound levels for nights  (time_of_day=0) 
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Fig. 1b. Krakowska Street, 2013, equivalent sound levels for evenings (time_of_day=1) 

 

 

Fig. 1c. Krakowska Street, 2013, equivalent sound levels for days (time_of_day=2) 

3 The proposed models for reconstruction of data for longer 
periods of time  

The aim of this paper is to reconstruct the missing data by applying the model which 

describes variability of sound level in the whole year 2013. To build the model, the 

computational intelligence methods, like fuzzy systems [8], regression trees or time series 

analysis [9] can be used. The second approach was applied and we built the model with 

Cubist regression tree software [10], using equivalent sound levels recorded in 2013. The 

training data for Cubist consisted of records, each containing values of one output attribute, 

dB_A (sound level) and 2 input attributes: day_of_the_week (from 1 – Monday to 7 – 

Sunday), and time_of_day (0 – night, 1 – evening, 2 – day). The training dataset consisted 
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of records collected in the first half of the year, while the test dataset contained records 

coming from the second half of the year. 

The data was dived into 3 separate sets, one for each time of day (night, day, and 

evening). Cubist produced 3 rulesets (one for each dataset). Later, they were merged, and 

the obtained regression tree model had 5 rules: 
 

IF day_of_the_week>6  AND time_of_day=0 THEN db_A = 63.48 

IF day_of_the_week≤6  AND time_of_day=0 THEN db_A = 64.03 + 0.15 day_of_the_week 

IF time_of_day=1 THEN db_A = 68.81 

IF day_of_the_week>5 AND time_of_day=2 THEN db_A = 76.098 – 1.078 day_of_the_week 

IF day_of_the_week≤5 AND time_of_day=2 THEN db_A = 70.74 
 

The accuracy of the model on the data regarding the whole year 2013 is quite good 

(Tab. 1) in terms of mean absolute error (MAE, eq. 4) and root mean square error (RMSE, 

eq. 5) 
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where    denotes real db_A value,   ̅ denotes  db_A value calculated by the model, and 

  is the number of records. For every day of week, and every time of day, MAE lies within 

the range of 0.47 dB (Saturday, day) to 0.98 dB (Sunday, night). The values of RMSE for 

every day of week and every time of day lies within the range of 0.59 dB (Saturday, day) to 

1.28 dB (Sunday, night). The values of MAE for all days of week together are: 0.83 and 

0.65 dB (nights), 0.87 and 0.61 dB (evenings), 0.58 and 0.59 dB (days), on the training and 

test data respectively. 

Table 1. Accuracy of the Cubist regression tree model on the data from the whole year 2013 

  Monday Wednesday Friday Sunday 

RMSE [dB]         

Night 1.02 1.05 0.74 1.28 

Day 0.93 0.72 0.79 0.75 

Evening 0.92 0.92 1.10 0.75 

MAE [dB]         

Night 0.85 0.74 0.59 0.98 

Day 0.67 0.54 0.60 0.59 

Evening 0.77 0.71 0.81 0.62 
 

Ten-fold cross validation (repeated several times) shows that MAE (mean absolute 

error) of the model for the first half of the year 2013 is 0.84–0.87 dB (nights), 0.87–0.88 dB 

(evenings), 0.58–0.60 dB (days). The scatter plots for prediction of sound level, for the test 

data (second half of the year 2013) are shown in Fig. 2. 

When the missing values of sound level for a particular night, evening, and day are 

replaced by the values obtained by the Cubist model, the LAeq,T values calculated for the 

whole year are: 64.74 (nights), 68.93 dB (evenings), and 70.35 (days). 
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Fig. 2. Scatter plots for prediction of equivalent sound level by Cubist regression tree model in second 

half of the year: a) for nights (time_of_day=0), b) for days (time_of_day=2) 

Later, the committee of models was built. At first, the Cubist system was run with the 

option „committee of 5 members”. The transparency of the obtained model was low (5 

regression trees in one model), and the accuracy was exactly the same as for single 

regression tree. Later, Cubist software was run with the option „committee of 100 

members”. In this case, the transparency of the models was very low (100 regression trees), 

and the accuracy was almost exactly the same as for the single regression tree. 

Later, RandomForest algorithm from WEKA software package was used to build 

random forest. Because the number of features (i.e. input attributes) is only 2, the random 

feature selection had almost „nothing to do”. The accuracy of the obtained model for 

evenings is better than that of the single regression tree built by Cubist. Mean average error 

(MAE) was: 0.84 dB and 0.65 dB for nights, 0.82 dB and 0.59 dB for evenings, 0.59 dB 

and 0.61 dB for days, on training and test data respectively. 

Next, the neural network model (multilayer perceptron) was built by Multilayer 

Perceptron algorithm from WEKA software. The accuracy of the obtained model is worse 

than accuracy of regression tree built by Cubist. Comprehensibility of the model is very 

low, because of the form of the models (weights and thresholds compared to if-then rules in 

the previously presented models). 

4 The proposed models for reconstruction of data for short 
periods of time  

The next aim of this paper is to reconstruct the missing data in short periods of time 

(several consecutive days only) with high accuracy by applying the model which describes 

variability of sound level in the whole year 2013. In this case, the training data contains 

time series data t_1, t_2,.. ,t_6. The dataset consisted of records, each containing values of 

one output attribute, dB_A (sound level), and 8 input attributes: day_of_the_week (from 1 – 

Monday to 7 – Sunday), time_of_day (0 – night, 1 – evening, 2 – day), t_1 (sound level 

value at the same time of day, but one day earlier), t_2 (similarly, but two days earlier), t_3, 

t_4, t_5, and t_6. The training dataset consisted of records collected in the first half of the 

year, while the test dataset contained records registered in the second half of the year. 

Again, the data was dived into 3 separate sets, one for each time of day (night, day, and 

evening). Again, Cubist produced 3 rulesets (one for each dataset). Later, they were 

merged, and the obtained regression tree model had 5 rules: 
 



IF day_week <= 6 AND time_of_day=0 THEN db_A = 31.598 + 0.343 t_1 + 0.169 t_2 

IF day_week > 6 AND time_of_day=0 THEN db_A = 2.999 + 0.656 t_1 + 0.255 t_5 - 0.019 

day_week + 0.023 t_2 

IF time_of_day=1 THEN db_A = 56.69 + 0.176 t_1 

IF day_week > 5 AND time_of_day=2 THEN db_A = 76.346 - 1.116 day_week 

IF day_week <= 5 AND time_of_day=2 THEN db_A = 48.393 + 0.25 t_1 - 0.113 day_week + 

0.141 t_4 - 0.068 t_5 
 

The transparency of the model is moderate (5 complicated rules). The accuracy is the 

best, but the model can be applied only for short periods of missing data (up to one week). 

For longer periods, most input values for the model (t_6, t_5, …, t_1) must be produced by 

the model itself, which would lead to lower accuracy. When t_1 to t_6 are taken from 

measurement data, the accuracy is 0.65 and 0.53 dB (nights), 0.79 and 0.60 dB (evenings), 

0.56 and 0.56 dB (days), on training and test data respectively. 

When the missing values of sound level for a particular night, evening, and day are 

replaced by the values obtained by this model, the LAeq,T values calculated for the whole 

year are: 64.74 dB (nights), 68.93 dB (evenings), and 70.35 (days). 

When the training dataset did not contain day_of_the_week and time_of_day input 

attributes (only dB_A and t_1, t_2, ..., t_6 time series attributes were present), the Cubist 

software produced regression tree, which had much lower accuracy for nights and days than 

the previous model. 

The comparison of results (Tab. 2) shows that the highest accuracy is obtained by the 

Cubist regression tree built for day_of_week and time series (t_1, …, t_6) training data, and 

this accuracy is better than that of the classifier presented in the previous section. 

Table 2. Accuracy of models for equivalent sound level at Krakowska Street monitoring station 

Mean Average Error, dB(A) Night Evening Day 

train 

data 

test 

data 

train 

data 

test 

data 

train 

data 

test 

data 

Cubist regression tree 0.83 0.65 0.87 0.61 0.58 0.59 

Committee of 5 regression trees, 

Cubist software 

0.83 0.65 0.87 0.61 0.58 0.59 

Committee of 100 regression 

trees, Cubist software 

0.83 0.65 0.87 0.61 0.58 0.59 

Random forest, WEKA software 0.84 0.65 0.82 0.59 0.59 0.60 

Neural network, WEKA software 0.93 0.61 0.87 0.62 0.63 0.61 

Cubist regression tree for 

day_of_week and time series 

data 

0.65 0.53 0.79 0.60 0.56 0.56 

Cubist regression tree for time 

series data only 

0.76 0.57 0.79 0.60 0.65 0.85 

Conclusions 

The comprehensibility of the classifier produced by Cubist regression tree for Krakowska 

Street monitoring station is highest among all obtained models. The comparison of results 

(Tab. 2) shows that for short periods of missing data, the highest accuracy is obtained by 

the Cubist regression tree built for day_of_week and time series (t_1, …, t_6) training data 

– 0.53 dB, 0.60 dB, 0.56 dB on test data for nights, evenings, and days respectively. For 

longer periods of missing data, the best accuracy is achieved by two models, obtained from 

training dataset which does not contain time series data, namely Cubist regression tree (for 

night and day equivalent sound levels – 0.83 dB and 0.58 dB respectively, on training data), 

and WEKA implementation of random forest (for evening equivalent sound levels – 0.82 



dB on training data). The time necessary to build most of the presented models does not 

exceed 0.2 s. 

The obtained models allow the calculation of the equivalent sound levels for the whole 

year: 64.74 dB (for nights), 68.93 dB (for evenings), 70.35 (for days). All the obtained 

results can be used for verification of sound propagation models during elaboration of city 

acoustic map. 
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