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Abstract. The paper presents a numerical model of 2-D microstructure of rigid 

polyurethane foam. The selection of geometric and material parameters is presented. 

For a particular structure, its behavior has been studied for typical cases of external 

loads (or forced displacements). The characteristic phenomena have been identified 

and described. A parametric analysis was performed due to the dimension of the 

cross-section of the struts which form the cell edges. An analysis of the impact of 

support and loading conditions on the behavior of the cell structure was performed. 
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1 Introduction 

Rigid cell structures of low density are very common in nature and have been produced by 

humans for many years. The relative density (the density of the cellular material divided by 

that of solid from which the cell walls are made) of typical rigid foam structures is in the 

range 0.025-0.05 and the Young modulus of the foam is about 1-5 MPa. Many believe that 

the importance of this class of structures is much greater than, for example, fiber 

composites. Despite this, the mechanics of rigid foam structures is often neglected. 

The problem of deformation of cellular structures has been repeatedly taken up in the 

literature. The starting point is usually the study of two-dimensional cellular solids [1]. 

Describing phenomena taking place in these structures, we can distinguish in principle 

elastic behavior, elastic buckling and formation of plastic hinges. One of the fundamental 

determinants of cell structure and its behavior is the relative density of the foam [2]. 

Searching for relationships between the relative density factor and material properties was 

widely discussed in the literature [3, 4], while the analysis of spatial structures is far more 

complex than 2-dimensional systems. The principal mechanism of linear-elastic 

deformation (cell wall bending) was correctly identified by Menges & Knipschild [5]. 

Much later it turned out that the density of the foam is not sufficient for a reliable 

characterization of the foam structure. The effect the manufacturing process on the foam 

microstructure and the properties of the matrix material is important but has received 

limited attention in the literature [6]. 
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This paper presents a relatively simple model of a rigid cellular foam structure. The 

elementary problem of the influence of the structure stiffness and density on the 

macroscopic behavior is discussed. For typical schemes of external loads, the phenomena 

leading to the mechanism of cells damage are observed. Analyzing these issues (including 

numerical issues) is essential for further, in-depth studies on phenomena occurring in foam 

cores of sandwich panels. 

2 Problem formulation 

A two-dimensional, honeycomb structure consisting of regular hexes is considered (Fig. 1). 

Such structure has been repeatedly described [1, 2, 7] and recommended for preliminary 

analysis of the behavior of foam cores. Interestingly, it was mainly used to find the 

relationship between foam density and foam mechanical parameters. This structure 

corresponds roughly to the actual foam structure (Fig. 2), although of course the actual cells 

are of varying size and shape. Another issue is the presence of shells in closed cell 

structures (Fig. 2). Despite these shells, many authors emphasize that their effect on the 

strength of the cell structure is small because the shells rapidly lose stability. In addition, 

the edges of the cells are much stiffer than the shells are. 

The structure consisting of 60×60 = 3600 open-cell hexagons was analyzed in the paper. 

This is a typical honeycomb structure. The length of the edge of the hex is 0.1 mm, so the 

whole structure is 10.48×9.05 mm. It is worth noting that this system is not symmetrical 

due to the small displacement of neighboring cells and the even number of cells. This was 

introduced consciously to avoid the symmetry of the numerical problem. 

 

 

Fig. 1. A periodic foam microstructure made of hexagon elements 

The aim of the study is to analyze the behavior of the system under the influence of 

unidirectional compression, tension and shear. For this purpose, 3 groups of models were 

created in the Abaqus system environment. The appropriate boundary conditions were 

assumed. In addition, the impact of structural rigidity on the cell deformations and stress 

values was investigated.  

 



 

Fig. 2. Actual structure of rigid polyurethane foam 

3 Numerical models 

The structure shown in Fig. 1 (60×60 cells) has been modeled using two-dimensional B23 

beam elements (two-node element, cubic shape functions). Each hexagon edge consists of 3 

finite elements. All connections of elements are rigid, but of course the nodes can move and 

rotate. Based on the available literature, it is assumed that the structure is made of the 

elastic material characterized by Es = 1200 MPa and s = 0.3. Of course, Poisson's ratio of 

the material does not affect the deformations observed macroscopically. Although only the 

elastic material was considered in the first models, a simple definition of plasticity was 

finally adopted. It was assumed that at the stress of 127 MPa the plastic strain is 0.0, and at 

the stress 140 MPa plastic strain is 0.1. 

One of the challenges was determining the dimensions of the cross-section of the beam 

elements from which the structure is composed. From the macroscopic observations (stress-

strain relation), the Plateau effect is initiated at a stress level of 90-100 kPa, which 

corresponds to a strain of 2-2.5%. Based on this information, and additionally taking into 

account that some deformations result from the shortening of the elements due to 

compression, a square cross-section of 0.015×0.015 mm was assumed. These dimensions 

are of a similar order as the values observed in reality (cf. Fig. 2). Finally, the structure 

consists of beams with a square cross-section of dimension ts = 0.015 mm, which form 

regular hexes connected to a system of 60×60 cells. Analyses were also carried out for 

different cross-sections, namely for square sections of dimension 0.0125 mm and 

0.010 mm. 

Due to boundary conditions, three basic cases were distinguished (compression, tension, 

shear). In certain areas, the appropriate displacement was forced, which quite well reflect 

the conditions of real experiments. On the bottom surface, displacements in both directions 

have been blocked (x, y). The upper surface had the following boundary conditions: 

a) compression: blocked horizontal displacement, forced vertical displacement downward, 

b) tension: blocked horizontal displacement, forced vertical displacement upward, 

c) shear: blocked vertical displacement, forced horizontal displacement to the right. 

In models 6, 7 and 8 (with a note: c – compression, t – tension, s – shear), these conditions 

were applicable to all nodes located on the respective surfaces of the model. Models 6, 7 

and 8 correspond to the structures made of the beam elements with the cross-section 

dimension 0.015 mm, 0.0125 mm and 0.010 mm, respectively. 

In order to analyze the other effects, 3 other models (9c_a, 9c_b, 9c_c) were also 

considered, wherein the starting point was model 6c. In the 9c_a model, instead of limiting 



the horizontal displacement (x-direction) of all the nodes on the two external surfaces, such 

a restriction was introduced only at one central point on the surfaces. As a result, the other 

nodes were free to move horizontally. In the 9c_b model, the horizontal displacement 

restriction was applied to all nodes located on two faces (as in the model 6c), but the 

vertical constraint was only applied to 6 points in the center of the top surface. Model 9c_c 

was different from model 6c in such a way that compression was forced in another direction 

(in x instead of y-direction). The displacements of the nodes on the left surface were 

blocked, and horizontal displacements (leftward) of all the extreme nodes on the right 

surface were forced. 

4 Results 

For each considered model, a numerical calculation was carried out until a loss of 

convergence of the solution. The loss of convergence occurred with a specified 

displacement. In the case of compression and tension, these were displacements in the y-

direction (u2), whereas in the case of shear the displacements were in the x-direction (u1). 

The characteristic results, corresponding to the moment when the solution convergence was 

lost, are shown in Tab. 1. 

Analyzing the results presented in Tab. 1, it should first be noted that the numerical 

problems lost the convergence at similar values of the compressive normal stress (of the 

order of 140 MPa). The stress level is equivalent to the yield stress of the material, but a 

very similar result was obtained for a material defined as ideal elastic. This means that the 

loss of convergence is rather related to the magnitude of the deformation of the elements. 

This is illustrated in Fig. 3, where the deformations of the entire specimens during 

compression (model 6c), shear (6s) and tensile (6t) are presented. The symbol S11 denotes 

normal stress in the beam element. It is worth noting that the extreme deformations occur in 

farthest cells located at the bottom and top of the specimens.  

Table 1. Characteristic results of numerical simulations 

Model Extreme 

displacement 

[mm] 

Extreme normal 

stresses [MPa] 

Absolute value of RF2 [N] 

Name ts [mm] Extreme value Average value 

6c 

0.0150 

-0.6871 (u2) 136.8 / -140.1 0.003102 0.0015 

6s 3.214   (u1) 148.5 / -220.7 0.04546 - 

6t 2.578   (u2) 149.6 / -274.1 0.07486 0.030 

7c 

0.0125 

-0.7921 (u2) 135.7 / -140.4 0.00170 0.00090 

7s 2.440   (u1) 136.9 / -160.0 0.01535 - 

7t 2.340   (u2) 144.2 / -274.1 0.0496 0.018 

8c 

0.0100 

-0.7790 (u2) 136.2 / -136.9 0.00080 0.00036 

8s 3.931   (u1) 140.0 / -254.6 0.025 - 

8t 2.154   (u2) 140.0 / -244.7 0.03015 0.010 

 



a) 

 
b) 

 
c) 

 

Fig. 3. Deformations of the cellular structure: a) compression (model 6c), b) shear (model 6s), c) 

tension (model 6t); the presented values (S11) denote normal stresses in cell elements 

 



The extreme values of support reactions RF2 (Tab. 1) are very different and obviously 

decrease considerably as the beam section size ts decreases. The mean values of the RF2 

(reaction in y-direction) are much more interesting. These values are practically equivalent 

to the mean value of normal force in vertical pillars of the cellular structure. In the case of 

model 6c, the normal force in the pillar is 0.0015 N, which at the cross-section area of 

2.25×10
-4

 mm
2
 means the normal stress of 6.67 MPa. This means that the bending of the 

structural elements is decisive for the level of normal stress and deformation of the system. 

It is easy to see this by comparing the strain in the pillar caused by the axial compression: 
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with the deformation of the structure observed macroscopically: 
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Assuming a certain thickness of the structure, e.g. bs = 0.1 mm, we can also calculate 

the macroscopically observed stress level and (effective) modulus of elasticity: 
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If the density of the material from which the structure is made is assumed in accordance 

with literature [2, 3] as s = 1200 kg/m
3
, the above values are obtained for a foam structure 

with a density of 30.96 kg/m
3
. When we reduce the cross-sectional dimension of the beam 

component of the structure ts  (models 7c i 8c), the density, structural rigidity and effective 

E-modulus decrease. 

These results provoke some reflections. First of all, the rigidity of the structural 

elements is too low. Certainly the Es modulus can be taken at the limit of maximum values 

known from the literature (1600 MPa). Moreover, the cross-sectional dimension of the 

beam element can be slightly increased to obtain a specimen density of 40 kg/m
3
, which is 

consistent with typical values for structural applications. It is much more difficult to 

achieve the correct (geometrically and physically) nonlinear behavior of the structure and to 

obtain well-known mechanisms of destruction. 

Analyzing deformations of a structure (including cellular) it is difficult not to refer to 

the issue of Poisson's ratio. In the case of cellular structure, a question immediately arises 

on how to determine and interpret the ratio. This is not the value set for one cell. Rather it is 

a value averaged over a certain area. Looking at the deformations of the entire structure in 

model 6c, it can be seen, however, that it is difficult to define the area for which we should 

determine Poisson's ratio. Boundary conditions (limitation of displacements u1) 

significantly disturb deformations of the structure. If you rely on the ratio of the maximum 

expansion of the specimen to its shortening, then we will get the value  = 0.985. To test 

how boundary conditions affect deformations of the system, in model 9c_a the compression 

was induced, but the horizontal displacements were limited only in one point of the lower 

and upper external surface (Fig. 4). The system deforms more regularly, however, 

measurements of the displacements of the entire specimen give  = 0.834.  



The regular hexagonal cell systems have different properties if we apply load (or forced 

displacement) in another direction. The anisotropy of the structure highly influences the 

structural behavior of mechanical systems [8]. In the 9c_c model, the boundary conditions 

have been changed. These are analogous to those in model 6c, except that the limitation of 

displacements u1 and u2 refers to the left surface (instead of the lower one), while on the 

right-hand side, displacements u2 are blocked and the compression is induced horizontally. 

The deformed system was slightly less oval than in the case of the model 6c, but the 

Poisson ratio determined using the macroscopic extreme displacements of the specimen 

was equal to  = 0.802. It is worth noting that all the obtained Poisson's ratios are higher 

than 0.5, which is greater than the theoretical limit for natural materials. Moreover, it is 

much higher than the values given in the literature for cellular structures.  

 
a) 

 
b) 

 

Fig. 4. Displacements of the nodes of the cell structure subjected to vertical compression  

(model 9c_a): a) horizontal displacements u1 [mm], b) vertical displacements u2 [mm] 

 



An interesting issue is also the impact of concentrated load on deformations of cell 

structures. Model 9c_b was developed based on model 6c, except that the vertical 

displacement (compression) was imposed not on the entire upper surface, but only on the 

six nodes located near the center of the upper surface. Despite the considerable rigidity of 

the system, surprisingly rapid vertical displacements were achieved at the place of 

extortion. These displacements occurred despite the fact that the deformations of individual 

cells were not too large (Fig. 5). In addition, the concentrated extortion was very quickly 

redistributed to a large area of the structure. 

 
a) 

 
b) 

 

Fig. 5. Displacements of the nodes of the cell structure subjected to concentrated compression  

(model 9c_b): a) horizontal displacements u1 [mm], b) vertical displacements u2 [mm] 

 



Conclusions 

The paper presents a simple 2-dimensional cellular structure. This structure was modeled 

using beam elements. Linear elasticity and plasticity have been assumed for the material 

from which the structure is constructed. The issues of the influence of stiffness of structural 

elements and boundary conditions (support and load) on structural behavior were discussed. 

The problem of Poisson's ratio determination for the structure was discussed. 

The results of the conducted analyses revealed surprisingly large local deformations of 

cells. These cells are degraded, leading to a loss of convergence of the numerical solution. 

Based on the deformations achieved for different structures, it can also be stated that the 

stiffness of the elements from which the structure is made is too low. For rigid foams used 

in civil engineering (e.g. used as cores in sandwich panels), a higher stiffness of beam 

elements should be assumed. On the other hand, the structural elements should lose stability 

much earlier, which is in some contradiction to the earlier conclusion. The probable 

solution to this problem is to use a model with a different geometry, different edge 

geometry, or a spatial model. This latter solution is appropriate after a slightly deeper 

understanding of the problems encountered in 2-D structures. 

The intriguing issue is the determination of the Poisson ratio for the foam structures. 

The results obtained for the honeycomb structure are very high and do not confirm the 

observations made for rigid polyurethane foams. The redistribution of local loads also 

deserves attention. This issue is important from an engineering point of view [9]. The 

results presented in the paper indicate rapid redistribution of forces and surprisingly small 

deformations of individual cells. 
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