
 

Numerical computation of the damping and 
stiffness coefficients of the classical and 
magnetorheological squeeze film damper 

Petr Ferfecki
1,2,*

, Jaroslav Zapoměl
2,3

, Michal Šofer
2
, František Pochylý

4
, Simona Fialová

4 

1IT4Innovations National Supercomputing Center, VŠB-Technical University of Ostrava, 

17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic 
2Department of Applied Mechanics, Faculty of Mechanical Engineering, VŠB-Technical University 

of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic  
3Department of Dynamics and Vibration, Institute of Thermomechanics, Czech Academy of Sciences, 

Dolejškova 1402/5, 182 00 Praha 8, Czech Republic 
4Victor Kaplan Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno 

University of Technology, Antonínská 548/1, 601 90 Brno, Czech Republic 

Abstract. Technological solution, frequently used to suppress vibrations in rotating 

machines, consists in adding damping devices between the rotor and its frame. This is 

enabled by dampers working on the principle of a squeezing thin classical or 

magnetorheological fluid film. The Navier-Stokes equations, Reynolds equation, and 

modified Navier-Stokes equations are used to determine the pressure distribution in 

the thin fluid film. The damping and stiffness coefficients are computed by the 

developed procedure presented in this paper. The proposed computational approach is 

based on the perturbation of the synchronous circular whirling motion. The carried-

out computational simulations show that the investigated mathematical models of the 

squeeze film damper and magnetorheological squeeze film damper allowed 

computation of the damping and stiffness coefficients. It has been found that the 

stiffness coefficients computed by the proposed mathematical models may be 

different. 
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1 Introduction 

Unbalance of rotating machines is the main source of their lateral vibrations. Technological 

solution, frequently used to suppress vibrations in rotating machines, consists in adding the 

damping devices between the rotor and its frame. 

The work of the damping devices is based on different, often mutually coupled, 

physical, mechanical, electric, electromagnetic, piezoelectric, hydraulic, or magneto-

rheological principles. A simple device to reduce attenuation of vibration is an elastomeric 

ring [1] that supports the outer ring of the bearing. The vibration reduction and suppression 
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of the journal bearing instability by the actively controlled journal bearing consists of a 

movable bushing with the use of piezoactuators as reported in [2]. In paper [3], an 

electromagnetic damper for the control of the lateral vibration of aero-engines is presented. 

On the other hand, squeeze film dampers (SFDs) are based on the mutually coupled 

hydraulic and mechanical physical principle. SFDs [4] have been used for many years to 

reduce the amplitude vibration and force transmitted to the foundation in the rotating 

machinery. The traditional SFDs [4] need to be designed for one free vibration mode shape, 

which should be eliminated in a rotor layout. Therefore, controllable SFDs working in 

active [5, 6] or semi active concepts [7-11] have been developed. The concept of semi 

active working mode is represented by SFDs lubricated by electrorheological [7, 8] or 

magnetorheological [9-11] fluids. 

Due to the physical properties of magnetorheological oils, the magnetorheological SFDs 

are highly nonlinear damping elements. In order to determine the higher harmonic 

components in the transient or steady-state response of the rotor system [12-15], it is 

appropriate to use the frequency spectrums processed by Fourier transform. 

The main parts of SFD (Fig. 1a) include two concentric rings with a thin layer of the 

lubricating film in between. The outer ring is firmly coupled with the damper body while 

the inner ring is connected with the rotor journal and damper housing by the rolling element 

bearing and squirrel cage spring, respectively. The spring enables the ring to vibrate in the 

radial direction but prevents its rotation together with the shaft. 

      

Fig. 1. The scheme of the traditional SFD (a) and magnetorheological SFD (b) 

A new concept of the semi-active damping device is represented by SFDs lubricated by 

magnetorheological oils. The damper body is equipped with an electric coil generating 

magnetic flux passing through the film of magnetorheological liquid (Fig. 1b). As 

resistance against its flow depends on magnetic induction, the change of the applied current 

can be used to control the damping force. 

In this paper, the computational procedure for determining the damping and stiffness 

coefficients of the classical and magnetorheological SFD have been developed and tested 

with the computational model of the damper presented in [11]. The pressure distribution in 

SFD is computed with mathematical models of the damper, based on the Navier-Stokes 

equations (NSE), modified NSE, Reynolds equation (RE), and RE modified for the damper 

with the short bearing approximation (SBA). A new mathematical model of the 

magnetorheological SFD with SBA based on the application of a bilinear material has been 

used to compute the pressure distribution. The carried-out computational simulations show 

that the developed mathematical models of the traditional SFD and magnetorheological 

SFD allowed computation of the damping and stiffness coefficients. It has been found that 

the stiffness coefficients computed by the proposed mathematical models may be different. 

a b 



2 Pressure distribution in the classical and magnetorheological 
SFDs 

The governing equations for the pressure distribution in the lubricating layer of SFD 

include NSE and the continuity equation [16], which are set up with the following 

assumptions: (i) the lubricant behaves as the Newtonian liquid; (ii) the flow in the fluid film 

is incompressible, laminar, and isothermal 
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Where x, y, z are the Cartesian coordinates, which define the directions of the fixed 

frame of reference, u, v, w are the x, y, z components of the velocity, fx, fy, fz are the 

components of the body force, p is the pressure, t is the time, and ρ and η is the density and 

dynamic viscosity of the lubricant, respectively. 

The equation of continuity represents the conservation of mass, and in the case of the 

incompressible fluid it can be written in the following form 
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RE [16] for the generation of the fluid film pressure can be derived from NSE (1-3) and 

the continuity equation (4) when taking into account the assumptions of the hydrodynamic 

lubrication [16, 17]: (i) the lubricant is the Newtonian liquid; (ii) the flow in the fluid film 

is incompressible, laminar, and isothermal; (iii) the inertial forces in the fluid film are 

neglected; (iv) the fluid pressure is constant in the radial direction; (v) the inner and outer 

surface of the damper ring is absolutely rigid and smooth; (vi) the width of the damper gap 

is small relative to the damper ring radius. Under these assumptions, the pressure 

distribution in the thin viscous fluid film of SFD is governed by the following RE 
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Where X, Z denotes the local coordinates describing positions in the lubricating film in 

the circumferential (X) and axial (Z) direction (Fig. 2). 

 

Fig. 2. The damper (xyz) and fluid film (XYZ) coordinate systems 

The thickness of the fluid film at a location given by the circumferential coordinate is 

defined by the relation 

           (   )  (6) 



where h denotes the thickness of the fluid film, c0 is the width of the gap between the 

inner and outer ring of the damper, eS is the eccentricity,  is the circumferential 

coordinate, and  is the position angle of the line of the centres (Fig. 2).  

It is assumed that the damper is symmetric relative to the plane perpendicular to the 

journal axis, the damper length to the radii of both rings is small, and the design 

arrangement of the damper makes it possible to be considered as SBA [17]. For such 

dampers, the prevailing flow in the lubricating layer occurs in the axial direction and RE (5) 

reduces to 
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By the double integration of the equation (7), the pressure profile in the axial direction 

of the damper is obtained in the form 
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The boundary condition expressing that the pressure at the ends of the damper is equal 

to 
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L is the length of the damper, and pA is the pressure in the ambient space. 

The developed mathematical model of the magnetorheological SFD is based on the 

assumptions of the hydrodynamic lubrication theory [17] except those for the lubricant. The 

pressure distribution in the full fluid film is governed by RE adapted for the bilinear 

material [18] 
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ZC is the axial coordinate, which defines the border between an unsheared region called 

the core and the region where the shear stress exceeds the τy yielding shear stress, τC is the 

shear stress at the core border, and ηC and η are the dynamic viscosities of the lubricant in 

and outside the core area, respectively. RE (10) is referred to the extent of axial coordinates 

for which it holds 0 ≤ Z ≤ ZC, and Eq. (11) describes the pressure distribution in the region 

where it holds ∂h/∂t < 0 and 0 < ZC < Z. 

The relation for the axial coordinate ZC, which defines the border between these two 

regions, is as follows 
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The solution of RE adapted to the bilinear material (10, 11) is obtained for the boundary 

conditions expressing that the pressure at the fluid film ends is equal to the pressure in the 

ambient space (9). 

The yielding shear stress of the magnetorheological fluid, needed for solving the 

pressure gradient in the region outside the core (11) depends on magnetic induction. Based 

on the measurements, dependence of the yielding shear stress on magnetic induction can be 

approximated by a power function [19] 
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B is the magnetic induction, and ky, ny are the proportional and exponential material 

constants of the magnetorheological fluid, respectively. 

In the most simple design case, the inner and outer rings of the damper can be 

considered as a divided core of an electromagnet. Then magnetic induction in the fluid film 

can be expressed 
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where I is the electric current, μ0 is the vacuum permeability, μr is the relative 

permeability of the magnetorheological fluid, and kB is the product of the number of the 

coil turns and the damping element magnetic efficiency introduced as a ratio of magnetic 

flux passing through the lubricating layer with respect to the total flux generated by the 

electric coil. The magnetic efficiency can be determined by computational simulations 

using a magnetostatic problem utilizing a finite element method [20]. 

3 Determination of the damping force components 

The components of the damping force are obtained by integration of the pressure 

distribution around the circumference and along the length of the damper 
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fy, fz are the y and z components of the damping force, R is the inner ring radius, pd is the 

pressure distribution, and 1, 2 are the circumferential integration limits. The pressure 

distribution and circumferential integration limits are set according to the cavitation model.  

The damping forces for SFD with SBA and for both the non-cavitated and cavitated 

operational regimes can be expressed in the analytical form, the force components 

expressions of which are given in [4]. 

The mutual interaction between the magnetorheological damper rings is accomplished 

by the hydraulic (damping) and magnetic forces. The hydraulic force is produced due to 

squeezing the magnetorheological fluid film and pushes the rings from each other. On the 

contrary, the magnetic force attracts. It is induced by the magnetic flux generated in the 

electric coils. In the paper [21] it was shown that the magnetic attractive force in the 

magnetorheological damper is much smaller than the hydraulic damping force, and 

therefore it is neglected in this study. 

4 Computational procedure for determining the damping and 
stiffness coefficients of dampers 

The influence of dampers on the performance of the rotating system dynamics has been 

studied with the mathematical modelling and experimental identification techniques [22]. 

The damping and stiffness coefficients of SFD and the magnetorheological SFD are 

obtained under the assumption of a circular centred orbit. The displacement and velocity 

components for synchronous circular whirling of the inner damper ring are defined by the 

relations 
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where yI, zI are the y and z components of the displacement of the inner damper ring, vI, 

wI are the y and z components of the velocity of the inner damper ring, ω is the whirl 

frequency, and e is the radius of the orbit. 

The perturbed motion is composed by synchronous circular whirling and the 

superimposed harmonic motion with small amplitude as well as frequency which is higher 

than the whirl frequency. The components of the perturbed displacements of the inner 

damper ring are given by the relations 

      [       (   )]   (  )       [       (   )]    (  )  (17) 

where yIp, zIp are the perturbed displacements of the inner damper ring in the y and z 

direction, ωp is the perturbed whirl frequency, and ep is the amplitude of the perturbed 

motion. 

The damping and stiffness coefficients may be obtained on the basis of the computed or 

measured increments of the damping force 
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where fp, f is the vector of the perturbed and unperturbed damping forces in the 

stationary reference frame, Δf is the increment of the damping force, and Δfy, Δfz are the y 

and z components of the damping force increment. 

Taking into account that the increment of the damping force Δf in the stationary 

reference frame acting on the inner damper ring can be expressed by the increment of 

displacement Δq and corresponding increment of the velocity Δ ̇ of the inner damper ring 
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   ,    ,   ̇ ,   ̇  are the y and z components of the increment of displacement and the 

increment of velocity respectively, B, K are the matrixes of the damping and stiffness 

coefficients in the stationary reference frame. In the damping bi,j and stiffness ki,j matrix, all 

diagonal terms are called direct coefficients and off-diagonal terms are called cross-coupled 

terms. 

The increment of displacement Δq and corresponding increment of the velocity Δ ̇ of 

the right-hand side of the equation (19) is obtained by computations for predefined 

kinematic parameters of the unperturbed and perturbed motion. Therefore, the unknown 

damping and stiffness coefficients are solved from linear equations in the following form 
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The damping and stiffness coefficients in the stationary reference frame are a periodical 

function of time and due to the increase in both accuracy of their computation and the 

numerical stability of the matrix A, the coefficients must be set during one period at a 

number of the time points (n > 20). The Moore-Penrose pseudoinverse (A
+
) is applied for 

solving the linear equations (20).  



5 Computational simulations 

Applicability of the developed methodology is demonstrated on the magnetorheological 

SFD, presented in [11]. Its photography is drawn in Fig. 3. 

 

Fig. 3. The image of the investigated magnetorheological SFD 

The technological parameters of the investigated magnetorheological SFD are as 

follows: the radius of the outer ring is 76 mm, length of the damper is 44 mm, width of the 

gap between the inner and outer ring of the damper is 1 mm, oil dynamic viscosity not 

affected by a magnetic field is 0.1 Pa∙s, oil dynamic viscosity in the core is 500 Pa∙s, 

magnetorheological oil density is 970 kg∙m
-3

, oil relative permeability is 5, damper design 

parameter is 60, and magnetorheological oil proportional and exponential material 

constants are 15 000 Pa∙T
-2

 and 2, respectively. 

The parameters of synchronous circular whirling of the inner damper ring are defined as 

follows: the whirl frequency is 1800 rpm, radius of orbit is 0.05 mm, perturbed whirl 

frequency is 18 000 rpm, and amplitude of the perturbed motion is 0.05 µm. 

The task was to study the damping and stiffness coefficients (i) for the traditional SFD 

(the magnetorheological damper coils are not connected to current supply) and (ii) for the 

magnetorheological SFD. 

 

Fig. 4. Schematic representation of the SFD geometry with applied boundary conditions; vIp, wIp are 

the y and z components of the perturbed velocity  

In this work, the commercial COMSOL software was used for solving the forces acting 

in SFD. The orbit radius is equal to 5% of the width of the gap between the inner and outer 

ring of the damper. Due to the small radius of circular whirling, the changes in the domain 

boundaries are negligible, the shape of the fluid domain is almost the same and therefore 

only one geometry model in COMSOL is used. The three-dimensional geometry of the 

damper filled with oil is simplified to the thin cylinder film (Fig. 4). The boundary 

conditions were defined in the form of ambient pressure at the outlet, symmetry at the half 

of the damper length, stationary outer ring, and movable inner damper ring (Fig. 4). The 

fluid is assumed to be incompressible, gravity forces are not taken into account, and the 

Reynolds number is equal to 1.8, and therefore the viscous model is set to laminar. NSE (1-

3) and the continuity equation (4) are numerically solved using a time-varying solver.  



The pressure distribution on the surface of the lubricating film for the non-cavitated (a) 

and cavitated (b) operational regime of the traditional SFD is depicted in Fig. 5. The 

location of the inner ring is offset in the horizontal (y) direction by 0.05 mm. The pressure 

distribution is almost constant in the radial direction, which clearly shows that the basic 

assumption of RE is satisfied. 

      

Fig. 5. Pressure distribution in the non-cavitated (a) and cavitated (b) operational regime of SFD 

      

Fig. 6. Pressure distribution in the damper middle plane (a) and the detail of the maximum pressure 

distribution (b); NSE-wit (Navier-Stokes equations - without inertial terms) 

      

Fig. 7. Time history of the damping force in the horizontal direction in the non-cavitated (a) and 

cavitated (b) operational regime of SFD 

The pressure distribution in the damper middle plane for the non-cavitated operational 

regime computed by means of several mathematical models of SFD is drawn in Fig. 6. The 

small differences in the amplitude and phase shift of the pressure distribution are 

determined between both mathematical models based on NSE. These differences are caused 

by negligence of the inertial effects in the NSE-wit mathematical model of the damper. The 

pressure distribution computed using the mathematical models (SBA, RE, and NSE-wit) of 

the damper neglecting the inertial forces is almost identical. 
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The time history of the damping force in the horizontal direction is depicted in Fig. 7. It 

is evident that the damping force for the non-cavitated operational regime is higher than the 

force related to the cavitated operational regime of SFD. The mathematical model of the 

damper with the assumptions of SBA arrives at the small increase in the damping force. 

And in this case, the flow in the damper is only in the axial direction. On the contrary, the 

mathematical model with NSE-wit arrives at a small reduction of the amplitude of the 

damping force and flow in the damper is three-dimensional. 

       

Fig. 8. Detail of the time history of the damping force (a) and time history of the increment of the 

damping force in the horizontal direction (b) 

In order to compute the damping and stiffness coefficients, the perturbed motion is 

considered and the unperturbed and perturbed damping force is plotted in Fig. 8a. The 

corresponding increment of the damping force is depicted in Fig. 8b. SFD is operating in 

the non-cavitated regime. Fig. 8b shows that the increment of the damping force for the 

three mathematical models (SBA, RE, NSE-wit) of the damper is almost the same. 

 

Fig. 9. Time history of the damping (a) and stiffness (b) coefficients in the non-cavitated regime of 

SFD; SBA (blue symbols), RE (continuous red line), NSE-wit (dashed green line) 

The time-varying damping and stiffness coefficients in the stationary reference frame of  

SFD and the three mathematical models (SBA, RE, NSE-wit) of the damper are depicted in 

Figs. 9 and 10 (the non-cavitated regime and cavitated operational regime, respectively). 

The magnitude of the direct damping coefficients for the non-cavitated regime is greater 

than the one for the cavitated operational regime. The direct damping coefficients are 

almost equal for the three mathematical models (SBA, RE, NSE-wit). The cross-coupled 

coefficients of the damping are the same size and its value of magnitude is small for the 

mathematical models based on SBA and RE. For the NSE-wit model, the cross-coupled 

coefficients are equal to zero. The results show that all stiffness coefficients are equal to 

zero only for NSE-wit mathematical model of the damper. This applies to the both SFD 
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operating regimes. For the non-cavitated and cavitated operational regimes of SFD (Fig. 9, 

Fig. 10), the values of the direct stiffness coefficients are different in comparison with the 

damping coefficients.  

       

Fig. 10. Time history of the damping (a) and stiffness (b) coefficients in the cavitated operational 

regime of SFD; SBA (blue symbols), RE (continuous red line), NSE-wit (dashed green line) 

      

Fig. 11. Pressure distribution in the cavitated operational regime of the magnetorheological SFD, 

I = 0.25 A (a), I = 1.0 A (b) 

      

Fig. 12. Time history of the damping (a) and stiffness (b) coefficients in the stationary reference 

frame of the magnetorheological SFD, I = 0.25 A 

The mathematical model of the magnetorheological SFD with the assumptions of the 

SBA and based on the application of a bilinear material (10, 11) has been used. The 

location of the inner ring is offset in the horizontal (y) direction by 0.05 mm. The pressure 

distribution in the area of the oil film for two magnitudes of the applied current is drawn in 

Fig. 11. The results show that a rising electric current increases the magnitude of the 

pressure.  
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The corresponding time-varying damping and stiffness coefficients in the stationary 

reference frame of the magnetorheological SFD are depicted in Fig. 12 and Fig. 13. The 

magnetorheological damper is operating in the cavitated regime. The higher the value of the 

current supplied in the coils the larger the magnitude of the damping and stiffness 

coefficients. 

      
Fig. 13. Time history of the damping (a) and stiffness (b) coefficients in the stationary reference 

frame of the magnetorheological SFD, I = 1.0 A 

Conclusion 

The development of a novel computational procedure for computing the damping and 

stiffness coefficients of the traditional SFD and magnetorheological SFD, learning more 

about the effect of the inertial forces in SFD on the pressure distribution and damping 

forces, and the knowledge about the behaviour of the damping and stiffness coefficients are 

the principal contributions of this article. 

Mathematical models of the damper based on NSE, modified NSE, RE, and RE 

modified for the damper with SBA were implemented for computation of the pressure 

distribution and the damping forces. It was found that the stiffness coefficients computed 

by the proposed mathematical models in SFD may be different. 

The mathematical model of the magnetorheological SFD with SBA, where the 

magnetorheological fluid is represented by the bilinear material, has been used to achieve a 

more accurate description and increased computational stability. The simulation results 

show that with the rising electric current the magnitude of the damping and stiffness 

coefficients of the magnetorheological SFD increases. 
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