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Abstract. Guided waves, especially Lamb waves or shear-horizontal waves, are 

widely used types of waves for ultrasonic inspection of large structures. Well known 

property of guided waves is their dispersive character, which means that the 

propagation velocity of the particular wave mode is not only a function of physical 

properties of the material, in which the wave propagates or the wave´s frequency, but 

also depends on the geometry of the structure in itself. Dispersion curves provide us 

the information related to the dependency between the wavenumber and the frequency 

of the particular mode and can be obtained by a numerical solution of Rayleigh-Lamb 

frequency equation. A solution of Rayleigh-Lamb frequency equation forms for a 

given frequency and plate thickness a set of a finite number of real and pure 

imaginary wavenumbers and an infinite number of complex wavenumbers. Proposed 

paper presents a complete procedure of how to obtain all three kinds of wavenumbers 

for a given geometry and frequency interval. The main emphasis is placed on the 

effectiveness of the procedures, which are used for finding the roots of dispersion 

equation for all three kinds of wavenumbers. 
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1 Introduction 

Ultrasonic testing is, besides eddy current testing method, one of most commonly used non-

destructive techniques in the case of inspection of plate-like structures [1]. Guided waves, 

especially Lamb waves, are ideal solution for inspection of large structures such as metal 

sheets or composite structures [2]. The ability of the effective crack detection by use of 

various modes of Lamb wave has been demonstrated in several publications [2-4]. The 

structure of the particular mode of guided Lamb wave in itself is relatively complex 

compared to the longitudinal or transversal bulk waves. This fact appears to be an 

advantage, since it is possible to select a particular mode shape in order to increase the 
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sensitivity of such mode to specific types of flaws [3]. This advantage, is however, directly 

related with increased complexity of the results interpretation. In most cases, one cannot 

perform further analyses without the numerical predictions, since the more modes are 

present in the structure, the more information about the flaw is available with rapid increase 

of the interpretation difficultness at the same time.  

The main feature of guided Lamb waves is their dispersive character, defined by 

dispersion curves, which describe us the dependency between the wavenumber and the 

frequency of particular wave mode for given geometry. The dispersion curves in case of 

single or multi-layered media can be obtained numerically and, as well as in particular 

frequency range, also experimentally [3-6]. Various methods of numerical approaches for 

dispersion curves computations has been published so far [3,7]. The main scope of the 

article is to present fast and robust procedure for calculation a set of real, imaginary and 

complex wavenumbers, which are the roots of dispersion equation, for wide range 

of frequency
 
thickness product. 

2 Theory of Lamb Waves 

The governing equation will be derived under plane strain condition with the assumption 

of traction-free surfaces (Fig. 1). 

 

Fig. 1. Geometry of the free plate 

The unknown displacement vector u will be defined with the use of the Helmholtz 

decomposition theorem [8,9]: 

          (1) 

with 

   = 0,  (2) 

where x and z are spatial coordinates,           and                 is 

potential and vector function respectively and   is differential operator. The equation of 

motion can be expressed in terms of displacements, resulting in following form: 

                          ̈   (3) 

where   and   denotes Lame constants,   is density of the material and  ̈ denotes 

second time t derivate of displacement vector u. Substitution of Eq. 1 into Eq. 3 will result 

in two independent governing equations for longitudinal and transversal waves: 
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where cL is the speed of longitudinal (dilatational) waves, cT is the speed of transversal 

(shear) waves. The solutions of Eqs. 4 and 5 can be assumed in following forms: 

                                    (6) 

where k represents wavenumber,   denotes angular frequency, functions      and      

represent standing waves in z direction. Functions   and   (Eq. 6) have to be further 

substituted into Eq. 4 and 5 in order to obtain final solutions for      and     : 
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where 
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  ,   ,   ,    denotes constants dependent of boundary conditions,    and    represents 

complex components along z axis,         and         represents wavenumbers of 

longitudinal and transversal wave and k represents wavenumber along direction of wave 

propagation. The displacements and stresses can be with help of Lame equations, Eq. 1 and 

Eqs. 6-9 expressed in following form: 
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Finally, Eqs. 10 and 11 can be split into two sets of modes according to odd or even 

functions about z = 0 axis [3]. 

The dispersion equation, or in other words Rayleigh-Lamb frequency equation, for both 

modes can be determined by applying the traction-free boundary condition         
           (See Fig. 1), which results in: 
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where +1 applies for modes of symmetric Lamb wave and -1 applies for modes of 

antisymmetric Lamb wave. 

3 Solution of Rayleigh-Lamb Frequency Equation 

As mentioned in chapter 1, the solution of Eq. 12 for given frequency will produce a set of 

finite number of propagating modes with real wavenumber, finite number of non-

propagating modes with imaginary wavenumber and an infinite number of inhomogeneous 

modes with complex wavenumber [1]. In the following chapters are discussed individual 

approaches of solving the Rayleigh-Lamb frequency equation for individual types of 

wavenumbers. It has to be noted, that the entire code has been written in Matlab
®
 software. 

3.1 Numerical solution for real wavenumbers 

For solving the real wavenumbers, it is preferable to rewrite Eq. 12 in following form [3]: 
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for symmetric modes and 

            
(  
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for antisymmetric modes. The procedure of finding the real roots of the dispersion 

equation is the same for both modes (Eqs. 13 and 14). The robustness of the procedure is 

based on the vectorization, which is incorporated in Matlab
®
 software. The wavenumber 

vector, through which were computed the values of the left-hand side of dispersion 

equations ranged from zero to     , where: 

              
     (15) 

where      is maximum angular frequency within the computed frequency interval. 

The incremental step of wavenumber interval is equal to: 

       
    

              
      (16) 

the larger incremental step is suitable in case of lower values of frequency
.
thickness 

product (approximately up to 3 MHz
.
mm), which delivers sufficient resolution for finding 

the roots. For higher values of frequency
.
thickness product, it is necessary to increase the 

resolution of the wavenumber vector for proper root localization. The roots of the 

dispersion equation for given frequency are located at the zero crossings when the left-hand 

side changes its functional value from positive to negative sign. – see Fig 2.  



  
 

Fig. 2. Functional values of the left-hand side of dispersion relation for given wavenumber interval 

(left graph) and the detail of roots (right graph) for aluminium plate of cL = 6300 m/sec, 

cT = 3100 m/sec and frequency.thickness = 4 MHz.mm 

Resulting dispersion curves in terms of phase velocity as a function of frequency and 

wavenumber as a function of frequency respectively are displayed in Fig. 3. It has to be 

noted, that the dispersion curves were constructed for aluminium plate of cL = 6300 m/sec, 

cT = 3100 m/sec and the thickness of the plate was equal to 8 mm. The frequency interval 

has been divided into 200 steps with a solving time equal to 5.5 seconds (CPU i7 3.4 GHz, 

32 GB RAM). For proper estimation of the cut-off frequencies, the number of frequency 

interval division has to be refined. 
 

  
 

Fig. 3. Dispersion curves in terms of cphase as a function of frequency (left) and wavenumber as a 

function of frequency (right). The symmetric Lamb modes are represented by red dots, the 

antisymmetric modes by blue dots 

3.2 Numerical solution for imaginary wavenumbers 

The pure imaginary wavenumbers, which represent evanescent waves, are supposed to be 

in following form: 

         (17) 

Eqs. 13 and 14 can be therefore rewritten as follows: 
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for symmetric modes and  
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for antisymmetric modes, where:   

     
    

     
  and       
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The entire procedure, including solution time requirements of finding the roots of Eqs. 

18 and 19 is essentially the same. Figure 4 displays the pure imaginary wavenumbers for 

aluminium plate of cL = 6300 m/sec, cT = 3100 m/sec and the thickness equal to 8 mm. The 

symmetric Lamb modes are represented by red dots, the antisymmetric modes by blue dots. 

 

Fig. 4. Dispersion curves in terms of kim as a function of frequency. The symmetric Lamb modes are 

represented by red dots, the antisymmetric modes by blue dots 

3.3 Numerical solution for complex wavenumbers 

The complex wavenumbers represent inhomogeneous modes, whose amplitude decreases 

exponentially with distance. Let´s suppose the complex wavenumber in following form:  

                      (21) 

When substituting Eq. 21 into the exponential representation of vertical displacement as 

a solution of the 1D wave equation:                  
, we´ll have: 

                                         (22) 

which expresses us the wave travelling from left to right with exponentially decreasing 

amplitude A according to increasing x-coordinate. Eqs. 9 have to be therefore modified in 

following way: 
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With respect to the resulting form of the complex components defined by Eq. 23, the 

solutions for complex wavenumbers, given by Eq. 13 for symmetric modes and Eq. 14 for 

antisymmetric modes cannot be solved independently for real and imaginary part of the 

complex wavenumber. Therefore, for a given frequency
.
thickness product, the left-hand 

sides of dispersion equations (Eq. 13 and 14) need to be evaluated with respect of two 

variables – kreal and kim.  



With Matlab´s incorporated Meshgrid function, which is also supported by, above 

mentioned, vectorization property, it is possible to relatively quickly and efficiently obtain 

the zero crossings for the real and imaginary parts of left-hand side of the dispersion 

relations for symmetric and antisymmetric modes. Figure 5 displays us the evaluated real 

part of left-hand side of dispersion equation for symmetric modes for particular value of 

frequency
.
thickness product. 

 

 

Fig. 5. Real part of left-hand side of dispersion equation (symmetric mode) in case of aluminium plate 

of cL = 6300 m/sec, cT = 3100 m/sec, thickness of 8 mm and frequency equal to 0.2 MHz 

The resulting real and imaginary parts of complex wavenumbers are given by the 

intersections between the solution of the real and imaginary parts of left-hand side of the 

dispersion relation for particular mode and frequency
.
thickness product (See Fig. 6). As 

mentioned before, the solution of the dispersion equation will give an infinite set of 

complex wavenumbers.  

 

Fig. 6. Real and imaginary parts of complex wavenumbers in case of aluminium plate of 

cL = 6300 m/sec, cT = 3100 m/sec, thickness of 8 mm and frequency equal to 0.2 MHz 

In our case, we will present the results for aluminium plate of cL = 6300 m/sec, 

cT = 3100 m/sec, thickness of 8 mm and the frequency interval was     ⟩    , divided 

into 100 steps with a solving time equal to 9.2 seconds (CPU i7 3.4 GHz, 32 GB RAM). 

The ranges for real and imaginary parts of complex wavenumbers were within 



〈       〉    . The incremental step of wavenumber vector, for both the real and 

imaginary part, was equal to max(kim/real)
.
10

-3
 m

-1
.  Fig. 7 displays the real and the 

corresponding imaginary parts of complex wavenumbers for above-mentioned input 

parameters. 

 

  

Fig. 7. Real (left) and imaginary (right) parts of complex wavenumbers in case of aluminium plate of 

cL = 6300 m/sec, cT = 3100 m/sec, thickness of 8 mm and frequency interval of     ⟩    . Capital 

letters denotes corresponding real and imaginary parts 

Conclusion 

Dispersion curves are an indispensable tool in case of wave scattering problems [1, 9, 10] 

or problematics of wave propagation. The main aim of this paper was to present an overall 

overview of the procedures of finding the real, imaginary and complex wavenumbers for 

given material parameters and frequency
.
thickness interval. The procedures of finding the 

individual types of wavenumbers have been written in Matlab software with incorporation 

of functions, which support the vectorised operations. Thanks to this fact, there was no 

extra need to put emphasis on the proper selection of the wavenumber intervals in order to 

decrease the number of steps, related to the interval range, with the aim of reducing the 

computational time. The entire set consisting from all three types of wavenumbers can be 

for given material parameters and frequency range with reasonable division obtained within 

20 seconds. Currently, authors are working on development of more time-efficient 

algorithm in order to apply the results with cooperation of Lamb wave structural health 

monitoring for various experiments [11-16] and also for further application in case of 

composite structures [17].  

 
This work was supported by Specific Research (SP2017/106 and SP2017/136) and by The Ministry of 

Education, Youth and Sports from the National Programme of Sustainability II (LQ1602). The 

support is acknowledged. 

References 

1. B. Poddar, V. Giurgiutiu, Scattering of Lamb waves from a discontinuity: An improved  

analytical approach. W. Motion 65, 79-91 (2016) 

2. B. Poddar, V. Giurgiutiu, Complex modes expansion with vector projection using 

power flow to simulate Lamb waves scattering from horizontal cracks and disbonds. J. 

Ac. Soc. of America 140, 2123-2133 (2016) 

3. J. L. Rose, Ultrasonic guided waves in solid media. (Cambridge University Press, 

2014) 

A 

B 

C 

C 

B 

A 



4. E. Moreno, P. Acevedo, Thickness measurement in composite materials using Lamb 

waves. Ultrasonics 35, 581-586 (1998) 

5. M. Šofer, P. Ferfecki, P. Šofer, Experimental construction of Lamb wave dispersion 

curves in plates. Conference paper, EAN 2017, 55
th

 International Conference on 

Experimental Stress Analysis (2017) 

6. Z. Lašová, R. Zemčík, Determination of group velocities of Lamb waves in 

unidirectional carbon-epoxy plate. Conference paper, EAN 2017 - 55th International 

Conference on Experimental Stress Analysis (2017) 

7. P. Hora, O. Červená, Determination of Lamb wave dispersion curves by means of 

Fourier transform. App. Mech. And Com. Mech. 6, 5-16 (2012) 

8. M. H. Sadd, Wave motion and vibration in continuous media. Univ. Of RI, Dept. Of 

Mech. Engr., Kingston (1990) 

9. J. D. Achenbach, Wave propagation in elastic solids. New York: North Holland (1984) 

10. M. Šofer, P. Ferfecki, P., J. Neugebauer, Effect of the shape of geometric discontinuity 

on nature of Rayleigh wave back reflection. Conference paper, EAN 2016, 54
th
 

International Conference on Experimental Stress Analysis (2016) 

11. R. Halama, M. Fusek, Z. Poruba, Influence of mean stress and stress amplitude on 

uniaxial and biaxial ratcheting of ST52 steel and its prediction by the AbdelKarim–

Ohno model. Int. J. of Fat. 91, 313-321 (2016)  

12. M. Handrik, P. Kopas, V. Baniari, M. Vasko, M. Saga, Analysis of stress and strain of 

fatigue specimens localised in the cross-sectional area of the gauge section testing on 

bi-axial fatigue machine loaded in the high-cycle fatigue region. Procedia Engineering 

177, 516-519 (2017) 

13. P. Kopas, M. Saga, V. Baniari, M. Vasko, M. Handrik, A plastic strain and stress 

analysis of bending and torsion fatigue specimens in the low-cycle fatigue region using 

the finite element methods. Procedia Engineering 177, 526-531 (2017) 

14. P. Kopas, M. Blatnický, M. Sága, M. Vaško, Identification of mechanical properties of 

weld joints of AlMgSi07.F25 aluminium alloy, Metalurgija 56, 99 -102 (2017) 

15. P. Kopas, L. Jakubovičová, M. Vaško, M. Handrik, Fatigue resistance of reinforcing 

steel bars, Procedia Engineering 136, 193-197 (2016) 

16. V. Baniari, M. Blatnicka, M. Sajgalik, M. Vasko, M. Saga, Measurement and 

numerical analyses of residual stress distribution near weld joint, Procedia 

Engineering 192, 22-27 (2017) 

17. R. Kocich, L. Kunčická, A. Macháčková, M. Šofer, Improvement of mechanical and 

electrical properties of rotary swaged Al-Cu clad composites. Materials & Design 123, 

137-146 (2017) 


