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Abstract. The subject of the paper is an application of the non-destructive vibration 

method for identifying the location of two cracks occurring in a beam. The vibration 

method is based on knowledge of a certain number of vibration frequencies of an 

undamaged element and the knowledge of the same number of vibration frequencies 

of an element with a defect. The analyzed beam, with a variable cross-sectional area, 

has been described according to the Bernoulli-Euler theory. To determine the values 

of free vibration frequencies the analytical solution, with the help of the Green’s 

function method, has been used.  
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1 Introduction 

The beams, whose geometry and/or material properties change along their length, are 

important for instance in the design of aircraft, robot arms and tall buildings, where they are 

used both to reduce weight or volume, and to increase strength and stability. However, in 

these types of objects even minor damage can cause structural failure and consequently 

even catastrophe. Therefore, it is very important to continuously control these elements and 

to detect damage as early as possible. To detect this type of damage, usually non-

destructive methods (a visual method [1], a penetration method [2], a magnetic particles 

method [3], a radiographic method [4], an ultrasonic method [5] and a vibration method [6-

9]) are used. If cracks appear, then the system parameters such as the rigidity, the vibration 

frequency or damping are subjected to change. Selection of the method is due to a number 

of factors, including the type of material, the size of the test element, and the type of 

internal or external damage.  

In this paper, the vibration method has been used for identifying the location of 

symmetric cracks in the cantilever beam with a variable cross-sectional area. The vibration 

method is based on knowledge of a certain number of vibration frequencies of an 

undamaged element and the knowledge of the same number of vibration frequencies of an 

element with a defect (the changes in the structure cause the changes of vibration 
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frequencies). On this basis, the normalization factors are determined, and then three-

dimensional graphs are created to plot contour lines to identify the crack. The number of 

searched parameters of one or more defects depends on the number of known frequencies. 

In the case of three-dimensional graphs (knowledge of the first three vibration frequencies), 

it is possible to identify two parameters of one damage (e.g. position and depth of gap [9]) 

or, as will be shown in this paper, one parameter (position of defects) of two cracks. The 

Green's function method [9-11, 13] was used to determine the vibration frequencies of the 

analyzed beam described according to the Bernoulli-Euler theory. 

2 Formulation and solution of the free vibration problem of the 
beam with a variable cross-sectional area 

In the paper, the cantilever beam with a varying cross sectional-area along the length and 

with two symmetrical cracks (Figure 1) has been analyzed.  

 

 

Fig. 1. A scheme of the system under study 

Because the identification damage process using the frequency method requires 

the knowledge of vibration frequencies of an undamaged element and the same number of 

vibration frequencies of an element with a defect, the analytical formulation and solution of 

the problem have been carried out. 

 Each N beam’s segment (length i=xi-xi-1, where i=1,...,N, x0=0, xN=L) have the same 

physical properties and geometrical parameters. 

 The governing differential equation of motion of i-th system’s segment is: 
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   is the linear differential operator, Zi(x,t) is the transverse 

displacement, EIi is the flexural rigidity and Ai is the mass per unit length. Moreover, 

functions iS  and iM are the shear force and the bending moment acting on the right end of 

i-th segment, δ( ) and δ'( ) are the Dirac’s delta and its derivative (the doublet function 

[12]). The functions Z1 and ZN satisfy homogeneous boundary conditions: 

       0,,0, 1
0

10 
 Lx

N
x

txZtxZ BB   (2) 

and the continuity conditions at the dividing points ix : 
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Assuming free vibration of the beam, we can separate variables: Zi(x,t)=zi(x)e
jωt

, 
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2
=-1 and ω is the free vibration frequency. Next, 

introducing parameters: 
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written as follows: 
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The solution of the problem (4-6) can be obtained with the help of the Green’s function 

method [9-11, 13].  

The Green’s functions of the operators Λi satisfy the non-homogeneous equations 

Λi[Gi]=δ(x-ξ) and the same boundary and continuous conditions as the transverse 

displacement functions zi. Functions Gi can be written as the sum:  
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where: y1(x)=cos(Ωx), y2(x)=sin(Ωx), y3(x)=cosh(Ωx), y4(x)=sinh(Ωx) constitute 

a system of fundamental solutions to the homogeneous equation Λi[Gi]=0 and coefficients 

Cik are obtained from the boundary conditions corresponding to the i-th segment of the 

beam. 

For a clamped-free beam function G1 satisfies conditions corresponding with a clamped left 

end and free a right end. In that case we can present coefficients C1k as follows: 
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The functions G2,..., GN satisfy conditions corresponding with free-free ends. In that 

case constants Cik (i=2,…, N) are: 
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The designations used in the formulas are as follows: 
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If the Green’s function is known, we can determine the solution of (4) in the form [9-11, 

13]: 
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Substituting solution (11) into continuity conditions (6) and introducing functions:  
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we obtain a linear set of 2N-2 equations with unknown parameters si, mi (i=2,..., N-1). In 

a matrix form, it is given as follows: 

   0XA  , (13) 

where a non-zero elements of a main matrix A are given below: 

 
1111,1

, xxQa  ,   
2112,1

, xxRa  , 

 
11,11,2

, xxQa
x

 ,   
21,12,2

, xxRa
x

 , 

  
11,1,1

, xxQa
N 

 ,   
21,11,1

, xxRa
N 




, 

  
11,1,2

, xxQa
xN 

 ,   
21,11,2

, xxRa
xN 




, 

 
11,12

,



iiiii
xxPa ,  

iiiii
xxQa ,

,12



,  

11,12
,




iiiii
xxRa , i=2,..., N-1 



 
1,1,2

,



iixiii
xxPa ,  

iixiii
xxQa ,

,,2
 ,  

1,1,2
,




iixiii
xxRa , 

  
1,2,12

,



iiiiNi
xxPa


,  

iiiiNi
xxQa ,

,1,12 



,  

1,,12
,




iiiiNi
xxRa


, 

  
1,2,2

,



iixiiNi
xxPa


,  

iixiiNi
xxQa ,

,1,2 



,  

1,,2
,




iixiiNi
xxRa


, 

 
2112,32

,



NNNNN
xxPa ,  

1111,32
,




NNNNN
xxQa , 

 
21,12,22

,



NNxNNN
xxPa ,  

11,11,22
,




NNxNNN
xxQa , 

  
21,132,32

,



NNNNN
xxPa


,  

11,122,32
,




NNNNN
xxQa


, 

  
21,13,22

,



NNxnNN
xxPa


,  

11,122,22
,




NNxNNN
xxQa


. (14) 

The frequency equation detA(ω)=0 is solved numerically with respect to the frequency 

ω. The mode shapes corresponding to the multi-stepped beam’s frequency are in the form 

(11), where unknown vector X=[s1 ... sN-1 m1 ... mN-1]
T
 is determined from (13), assuming 

the value of one of the coefficients si, mi (for example mN-1=1). 

3 Sample numerical results of identification of the cracks' 
position 

Using the presented model, the algorithm and computer program that enable 

the determination of the free vibration frequencies of the cantilever beam with a variable 

cross-sectional area have been worked out. 

 The exemplary results of numerical calculations illustrate the identification of distance 

(L1, L2) of cracks from the attachment. The following values of parameters have been 

accepted: a = 75 mm, b = 20 mm, c = 5 mm, g = 1 mm, h = 10 mm and L = 500 mm.  

 On the basis of the determined first three natural frequencies, the normalization process 

has been performed. In this case, the normalization is defined as the ratio of the frequency 

of the damaged beam (ωu) to the frequency of the beam without defect (ωn): 
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 Based on the normalization factors, the three-dimensional graphs are created. In Figures 

2-4, the changes of the values of the first three normalized vibration frequencies depending 

on the location of two cracks and sample contour lines corresponding to them (used later in 

the identification process) are shown. On the basis of three-dimensional graphs, the 

individual contour lines for each examined frequency having the same parameters of the 

damage must be plotted (Figs. 5-7). As an example, in Figure 8, the contour lines for the 

cracks located at the beginning of the beam (first) and close to the free end of the beam 

(second) were plotted.  



 

Fig. 2. The first normalized vibration frequency depending on the location of two cracks  

 

Fig. 3. The second normalized vibration frequency depending on the location of two cracks 

  

Fig. 4. The third normalized vibration frequency depending on the location of two cracks 

 



 

Fig. 5. Contour line for the first normalized vibration frequency 

 

Fig. 6. Contour lines for the second normalized vibration frequency 

 

Fig. 7. Contour lines for the third normalized vibration frequency 

 

Fig. 8. The identified position of cracks  



 As a result of the intersection of the contour lines (Figure 8), the point defining 

the places where the cracks are located was determined. The distances of the cracks from 

the attachment obtained in the identification process (L1d=49.7 mm and L2d=450.2 mm) 

practically coincide with the values (L1a=50 mm, L2a=450 mm) assumed during 

the numerical simulations. To verify the accuracy of the discussed identification process, 

the cases specified in Table 1 were additionally executed. The relative error defines the 

difference between the assumed positions of cracks (L1a, L2a) and the values calculated in 

the identification process (L1d, L2d): 
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Table 1. Positions of cracks obtained with the help of the non-destructive vibration method 

Assumed positions of cracks Determined positions of cracks The relative 

error L [%] L1a [mm] L2a [mm] L1d [mm] L2d [mm] 

50 300 49.5 299.8 0.54 

125 300 123 302 1.14 

225 300 224.7 299.5 0.15 

50 375 45 375.2 5.58 

125 375 132 376.5 2.85 

225 375 222.6 373 0.81 

50 450 49.7 450.2 0.32 

125 450 125.5 450.8 0.29 

225 450 225.8 450.5 0.23 

 

 Based on the results compiled in Table 1, it can be seen that the relative error in most 

cases does not exceed 3%. The largest value of the relative error is for damages occurring at 

points L1a=50 mm and L2a=375 mm. The smallest relative error (0.15%) is the case where 

the cracks are closest to each other in relation to all considered instances. Moreover, for 

L2=375 mm or L2=450 mm and with an increase L1 the error decreases.  

Conclusions  

In the present work, the identification of the location of two symmetrical cracks occurring 

in the cantilever beam with a variable cross-sectional area has been done. For identification, 

the non-destructive vibration method has been applied. This method requires knowledge of 

the frequencies of the system without and with the damage. The solution of the free 

vibration problem of the beam described according to the Bernoulli-Euler theory has been 

obtained with the help of Green's functions. 

 In the computational models, a rigid restraint has been used. However, this type of 

boundary condition is impossible to achieve in real objects. Therefore, mathematical 

models should be experimentally verified. In the case when the system response diverges 

from the theoretical results, then an identification of the model must be performed [14]. 

 Although in this study only exemplary numerical research has been carried out, this 

method can be successfully used for the identification of damage of real objects. Identifying 

structure damage at an early stage has a great influence on the repair cost and has 

a significant impact on safety. 
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