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Abstract. The numerical approach based on the finite element method (FEM) for 

modeling of mechanical interaction between three-dimensional objects is presented in 

the paper. The model of contact is based on the assumption that the nodes of the 

region which is the source of contact cannot overlap with the nodes of the region 

being the target. The procedure of the detection of collision between surfaces of the 

source and the target is discussed in details. The behaviour of surfaces being in 

contact depends on their rigidity and is numerically modeled in the case of perfectly 

rigid source and deformable target. Each modeled object has an independent mesh of 

finite elements. These meshes can be freely moved relative to each other. Example of 

calculation using original program written in C++ is presented and discussed. 
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1 Introduction  

Mechanical contact between working elements is very common in engineering practice. 

Various kinds of machine parts work together going into the mechanical and also thermal 

interactions. Mechanical contact is the result of direct impacts of their external boundaries. 

In general such interactions occur between the deformable bodies although often for the 

sake of simplicity is assumed perfect rigidity of one or more bodies.  

The first work focused on the classical contact mechanics was written by Heinrich Hertz 

in 1881 [1]. Hertz investigated the contact problem between two elastic bodies with curved 

surfaces. Nearly one hundred years later Johnson, Kendall, and Roberts found a similar 

solution for the contact with adhesion [2]. Their model of contact is known as JKR model 

of elastic contact. Different approach called DMT model was proposed by Derjaguin and 

co-workers in 1975 [3]. Bowden and Tabor investigated the importance of surface 

roughness in contact process [4]. Archard in 1957 was the first who found that the area of 

contact is approximately proportional to the normal force [5]. Nowadays advanced 

numerical methods such as finite element method (FEM) and the development of computer 

                                                 
*
 Corresponding author: t.skrzypczak@imipkm.pcz.pl 

Reviewers: Marek Macko, Branislav Ftorek 



technology makes possible numerical modeling of complex problems [6-8]. This work aims 

to present a method of detecting collisions between objects surfaces and matching them 

during elastic deformation.  

2 Mathematical model 

Two elastic objects are considered (Fig. 1). The first one called the target is fixed and not 

deformable, while the second called the source is mobile and deformable. In the initial 

phase, the objects are separated, then the movement of the source causes contact and 

deformation. 

 

 

Fig. 1. Objects in contact 

Mathematical model of deformations during the mechanical contact is based on the 

equilibrium equations of linear elasticity. Because the target of the contact is non-

deformable and fixed below equations is only written for the source of the contact: 
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where: σx, σy, σz, τxy, τxz, τyz are the components of the symmetrical stress tensor (τxy = τyx, 

τxz = τzx, τyz = τzy) and x, y, z - Cartesian coordinates. 

Above equilibrium equations contain six unknowns and must be converted in order to 

be the functions of displacements ux, uy, uz because the number of equations must be the 

same as the number of unknowns. The components of stress tensor can be written in the 

following form: 
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where: E - Young's modulus, ν - Poisson's ratio, εx, εy, εz, γxy, γxz, γyz - the components of 

symmetrical strain tensor defined as follows: 
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Equations (2), (3) make possible to convert equilibrium equations (1) into the functions 

of unknown displacements ux, uy, uz: 
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where physical parameters f1, f2, f3 are defined in the following way: 
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Presented mathematical model of elastic deformations is supplemented by the 

appropriate boundary conditions: 

 0,0 
 zyx uuu  (6) 



3 Numerical model 

The numerical model is based on the finite element method [9] and is derived from the 

criterion of the method of weighted residuals [10]. Equations (4) are multiplied by the 

weighting function w and integrated over the volume Ω of the deformable object. Weak 

form of equations (4) is shown below: 
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The weighting function w depends on the method used in the process of spatial 

discretization. Presented model is based on the Galerkin method where w is the same as the 

shape functions of the finite element used during discretization of considered volume. Final 

form of the global FEM equations is presented below: 

 K·u = B, (10) 

where K is the global stiffness matrix, B - vector where known boundary displacements 

are stored, u - vector of unknown nodal displacements. 

3.1 Collision detection 

The collision occurs when the surface nodes of the moving object enter the interior of the 

stationary object (Fig. 2). Surface nodes of the source are then located within the boundary 

of finite elements of the target. The mesh may contain millions of elements, especially 

when it consists of tetrahedrons, so it is important to mark only those elements of the target 

that may collide with the source before starting of calculation process. Analogous selection 

also takes place in the elements of the source. This pre-selection of the surfaces of potential 

contact allows for huge savings in computational time during computer simulation. 

Collision is detected when any surface node of the source is inside the boundary of finite 

element of the target.  

Fig. 3 shows the node N that is inside the tetrahedral finite element ABCD due to a 

collision. Collision detection is very simple in this case. At the beginning it is necessary to 

determine the volume V of the tetrahedron E. Next, the volumes V1, V2, V3, V4 of 



tetrahedrons ABCN, BDCN, ACDN, ABDN constructed from the successive walls of 

element E and node N are calculated. 

 

 

Fig. 2. Collision of objects 

 

 

Fig. 3. A node inside a tetrahedral finite element during collision 

If N is inside E, the following condition must be fulfilled: 

 VVVVV  4321  (11) 

Equation (11) is the collision criterion. Each calculation step requires searching the set 

of contact nodes of the source and checking this criterion for all selected boundary elements 

of the target. Nodes that meet condition (11) are marked as "collision nodes" because they 

must be moved from the inside of the element to its surface. 



3.2 Object deformation 

The surfaces of the objects in contact can not penetrate each other, so all the collision nodes 

must be translated to the surface of the target. The translation vector of each node is 

calculated perpendicular to the contact surface. In fact, the nodes are not directly moved, 

but the calculated translations modify vector B. Then the displacements of each node are 

obtained after solving the set of equations (10). Modified shape of the collision region in 

the source is shown in Fig. 4. 

 

 

Fig. 4. Modification of the surface of the source after collision 

The deformation of the source during contact progresses gradually step by step. It is 

important that the displacement of the source at each time step is less than the thickness of 

the surface layer of the elements in the mesh of the target. The algorithm during each time 

step can be expressed as follows: 

1. Translation of the source 

2. Detection of the collision nodes 

3. Calculation of the boundary conditions in the collision region 

4. Calculation of the nodal displacements of the source 

5. Modification of the nodal coordinates 

6. Return to point 1 

4 Example of calculation  

An original computer program using Visual C++ 2008 has been written. Finite element 

meshes were prepared with the use of mesh generator GMSH 2.9. A system containing two 

balls of the same diameters D=0.1 m is analyzed. The initial configuration of spatially 

discretized volumes is presented in Fig. 5. Each ball has an independent mesh built of 

tetrahedrons of average size he=0.003 m. First mesh contains 69747 elements with 12575 

nodes, the second one has 67826 elements with 12251 nodes. Ball 1 is divided into finite 

elements despite the assumption of non-deformability because the algorithm for collision 

detection requires spatial discretization of each object in the system. Ball 2 is made of 

rubber with Young modulus E=0.05 GPa and Poisson's ratio ν=0.49. Ball 2 moves along 

the x axis at a speed Vx=1 mm/s. Time step Δt=1 s, total time of the analysis ttotal=25 s. On 

the right half of the surface of the ball 2, displacement boundary conditions are defined 

uy=uz=0 m. Displacement ux=1 mm is constant and cumulative due to modification of nodal 



coordinates at each step of analysis. This means that after 25 seconds the nodes on the right 

half of the ball 2 move along the x axis by 25 mm. 

 

 

Fig. 5. Initial configuration of the system 

The behaviour of balls in contact is presented in Fig. 6a-d. Right half of balls 2 remains 

unchanged due to assigned boundary conditions while the left one is subjected to large 

deformations.  

 

a) b) 

c) d) 

Fig. 6. Four phases of contact a) t=5 s, b) t=10 s, c) t=15 s, d) t=25 s 

Fig 7a-d show the stages of deformation of ball 2. It is clearly visible how the mesh of 

ball 2 fits the shape of ball 1. The gradual increase in displacement allows for accurate 

modeling of even large deformations. 



a) b) c) d) 

Fig. 7. Cross section through ball 2 in the xy plane during successive contact phases a) t=5 s, b) t=10 

s, c) t=15 s, d) t=25 s 

Conclusions 

The numerical method of contact modeling in three dimensional space was presented. 

Described method of collision detection and modification of finite element meshes during 

the contact is straightforward and efficient. Presented approach may be useful in simulation 

of various processes occurring in the systems containing multiple elements. For example, 

the solidification of the metal in the mold is a process where two regions are in mechanical 

and also thermal contact. Further work will be focused on the expansion of the numerical 

model. 
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