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Abstract. Currently, the quality of structural design of a railway coach is evaluated 

by so called acoustic comfort, which is characterized by achieved levels of internal 

noise. Therefore, acoustic parameters of car body are being developed purposely. The 

paper presents the results of the computer simulation of noise transmission through 

the wagon walls and the use of noise tests from the train running. The acoustic 

properties of the original and new materials in the care body are compared. 
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1 Introduction 

Currently in the EU, increased attention is paid to reducing rail noise, so all EU Member 

States are doing research in the area of noise reduction. In particular, technical solutions in 

the field of railway vehicle design, track structure and technological aspects of rail traffic 

can effectively reduce the noise emitted by the operation of a railway vehicle. Possible 

approaches in this area can be defined mainly in the following aspects: 

- Investigation of noise sources and vibration sources and noise propagation pathways, 

- Simulation and modelling of the noise fields generation and their impact on the 

surroundings and passengers, 

- Verification of theory and computer modelling by experimental research in traffic 

conditions, 

- Evaluation and development of noise reduction procedures and methods applied on the 

design of relevant railway vehicles. 

The reduction of railway noise requires the research of the above-mentioned interconnected 

areas as components of the system. In railway traffic, we meet with two ways of noise 

reduction: 

- Urgent acute noise abatement usually resulting from measured noise exposure situations 

detected mainly by state supervision, e.g. noise affecting residential areas, or passengers 

in the interior of a railway vehicle, 
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- The conceptual task required by legislation or environmental policy of the EU, or 

individual states, e.g. concept of formation and international transit of “silent trains”. 

Often the modern rolling stock designs in terms of assessment and noise emissions are 

mostly at the limit of existing possibilities. Also, the approaches of the secondary solution 

(acoustic barriers, car body design, aerodynamics of the shape of a railway vehicle body, 

the use of modern materials) are relatively well worked out. Different design and interior 

materials also have well-defined parameters of airborne sound and sound absorption. At the 

same time, the use of modern materials and technologies that effectively promote recycling 

is of particular importance today. The rapid transfer of scientific knowledge and the results 

of experimental research in the field of noise emissions from rolling stock into transport 

practice bring new opportunities, tools and approaches to the effective improvement of the 

quality of the environment [1, 2, 3, 4].  

2 Application of porous acoustic materials in simulation of 
acoustic energy transfer through the structure of a rail 
passenger wagon floor 

Research that is associated with the acoustic properties of porous materials needs to be 

applied in practice. From the point of view of the objective assessment of the noise 

emissions generated by the rolling stock, it is necessary to identify the origin and sources of 

noise on a railway passenger car and also the type and pathways of spreading acoustic 

energy into the structure and the surrounding area. This space represents not only the 

transport communication and its immediate surroundings, but also the interior of a vehicle, 

where the passengers are exposed to the noise. In the general interest, it is necessary to 

address the possibilities, the ways and the new technologies for reducing the noise in the 

interior of the means of transport, not only in the automotive industry, which is the major 

leader in the research of new technologies for the production and application of acoustic 

materials, but also on the railway. It is an integral part of the business strategy of 

manufacturers and operators of the means of transport in general. By this the comfort of 

transport is being improved and it directly affects the final customer, that is, the passenger 

when choosing a suitable means of transport. 

At present, numerous modern technical and technological solutions for noise reduction 

are being used in the development of new vehicle designs. One of the frequent trends is the 

research and development of new acoustic materials and the way they are used. 

There is a wide range of modern thermal and sound-insulating materials on the market. 

These materials are used in the design of new rolling stock. In recent years, ZSSK (Railway 

Company Slovakia) has been modernizing its fleet and thus offering a good opportunity to 

improve the acoustic properties not only of the floor but also of the entire car body in the 

modernization of passenger railway wagon. Therefore we have also focused our research on 

the design the Bdghmeer railway wagon. In the design of the floor of the Bdghmeer 

passenger railway wagon, mineral wool is currently used as a heat-insulating and sound-

insulating material. During the modernization only the old insulation layer is replaced by 

the new one. The research at the Department of transport and handling machines was also 

focused on the design of new acoustic and thermal insulation materials in the wagon floor 

structure. 

The simulation processes of sound propagation in liquids and solids in simulation tools 

are based on several mathematical models. From the point of view of the requirements of 

the airborne sound reduction of the floor structure of a passenger railway wagon, mineral 

wool and newly designed STERED® material has important role. In both cases, these are 

porous materials with a fibrous microstructure. The acoustic energy is predominantly 



converted to thermal energy, while the sound propagation in the porous structures is 

determined by the ability of the air to propagate through the pores of the microstructure and 

also by vibrations that propagate through the solid structure of the fibrous material, in this 

case the fibres. The sound waves propagate through the fibres. An example of the flow of 

fluid (air) through the porous structure is shown in Figure 1. 
 

 

Fig. 1. Transfer of fluid through the structure of the porous medium [5] 

A scientific discipline that deals with propagation of sound in porous substances is 

called "porous acoustics or acoustics of porous materials". By defining appropriate 

parameters for a porous material, the simulation program is able to create a model of the 

porous structure of the material and use it to simulate the transmission of acoustic energy 

through this structure. From the research of the acoustic properties of porous materials it 

implies that the most significant effect on acoustic parameters such as sound absorption and 

airborne sound reduction has the so-called viscous characteristic length Lv. It is a parameter 

that determines the mean value of the macroscopic dimensions of the channels that bind the 

individual pores of the material structure. Simulations within the investigation of the 

acoustic parameters of the wall of the monitored passenger wagon were mainly focused on 

determining the sound reduction and sound absorption of the original solution using the 

mineral wool and verifying these acoustic properties using the new progressive material 

STERED
®
. 

 

 

Fig. 2. Frequency dependence of airborne sound reduction index on the porosity of fibrous material 

From the simulations obtained, original 3D charts have been created that declare the 

properties, which are damping capabilities of the investigated structure and materials used. 

In the figure 2 is an example of simulation for determining the sound reduction of the 

porous material. 



3 Simulation of acoustic energy transfer through porous media 

The role of simulation tools is to approximate as much as possible the actual physical 

actions which are constantly ongoing in nature. Simulation software works on the basis of 

mathematical models (Fig. 3), which were mostly derived from empirical relationships 

obtained on the base of sufficient number of relevant experiments.  
 

 

Fig. 3. The most used mathematical models and parameters necessary for the formation of a porous 

structure [5] 

 

 

Fig. 4. Thermal and viscous characteristic pores length - from the microscopic image of polyurethane 

foam [6] 

The simulations use different mathematical models on which the calculation and 

simulation of acoustic energy transfer through the porous structure runs (Fig. 4) [7]. 

Thermal and viscous characteristic length directly determines the texture, shape and 

arrangement of pores, or fibre porous structure. The equation for their calculation is as 

follows: 
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where: 

Lv - viscous characteristic length, 

µ  - dynamic viscosity of air, which is in the pores, 

εp - porosity, 

Rf  - airflow resistance., 

τ  - curvature pores impact factor (Fig. 5). 
 

 

Fig. 5. Curvature pores impact factor [8] 

Curvature pores impact factor can be calculated as: 
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where: 

L - sound pressure level, 

hc - board thickness. 

The empirical formula for calculating of the air flow resistance is as follows: 
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where: 

a - the mean fibre diameter. 

Curvature pores impact factor of the fibre structure can be calculated according to the 

empirical formula: 
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or it can be estimated from the detailed study of the microstructure microscopic image 

in the following manner. By substituting these equations into the equation 1 we obtain 

equation in this form: 
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Research on acoustic properties of porous materials showed that the most significant 

effect on the acoustic parameters, such as sound absorption and airborne sound insulation 

has a viscous characteristic length Lv. It is a parameter which determines the mean value of 

dimensions macro-channels, which connect the individual pores of the material structure. 

Here rise the viscous losses of sound energy, when air pressure changes permeating from 

one pore to another through a channel that connects these pores. Parameter called thermal 

characteristic length Lth is derived from the viscous characteristic length. It indicates the 

mean macroscopic pore size of the porosity structure [9]. 

Mineral wool and STERED
®
 are porous fibrous materials. Decisive influence on the 

acoustic properties of porous materials has just the porosity. The porosity influence of the 

fibrous material on the acoustic properties has been studied by using of the simulated 

computation by the change of the porosity in a range from 5 to 99.5% by 0.5% and the 

frequency from 10Hz to 10 kHz by 10 Hz. 

Model presents a principle of the impedance tube (Fig. 6) and the inlet signal is defined 

by function in complex form. [9-11] 

     Paexp1 ykyxkxi   (6) 

where: 

x - position vector of given environment oscillator in direction of application of x-axis, 

y - position vector of given environment oscillator in direction of application of y-axis, 

kx - wave vector in the x-direction of sound waves propagation, 

ky - wave vector in the y-direction of sound waves propagation. 

 

 

Fig. 6. Model of simulation of acoustics energy transfer through the porous media 

The influence of material porosity on the sound reduction index and sound absorption 

coefficient is better observable on the graph, which was created by the separation of the 

specific frequencies (Fig. 7). The monitored characteristics of acoustic parameters at the 

frequency of 1 kHz are given as an example (Fig. 8). 

 



 

Fig. 7. Frequency dependence of sound absorption coefficient and sound reduction index on the 

material porosity 

 

 

Fig. 8. The characteristic of sound reduction index and sound absorption coefficient depending on the 

material porosity in frequency 1 kHz 

Model for investigation of the acoustic energy transfer through the porous material was 

created within the simulation. Related percent porosity of the material, its sound absorption 

and airborne sound insulation depending on the frequency of transferring acoustic energy 

was monitored. As an output example is presented the dependence at the frequency of 

1 kHz, which is the best audible by human ear and so the simulation results of effects of 

noise on human body can be taken relatively objective. 

The studied relationship is based on energy balance transfer of acoustic energy through 

the porous microstructure of fibrous material (Fig. 9). 

 



 

Fig. 9. Energy balance of the acoustic energy transfer through porous fibrous microstructure 

The mathematical model can create a geometrical model of the fibrous material 

microstructure, which in principle works as a breaker of acoustic waves. The influence of 

the material porosity is important and therefore porosity measurement of mineral wool, 

material STERED® 200 and STERED® 250 (Fig. 8) was performed, by using direct 

porosity measurement method. This method is suitable only for very regular-shaped test 

samples. The measured samples had to be saturated in the water under vacuum. The volume 

of pores was determined on the base of the water bulk density, which was in the pores of 

porous materials [12, 13]. 

4 Measurement of internal and external noise of a passenger 
railway wagon 

Due to the need to perform simulation calculations of acoustic energy transmission through 

the structure of the floor of a passenger railway wagon and verifying the suitability of using 

the proposed STERED® acoustic material in this design, it was necessary to measure the 

internal noise and external noise that is acting in the space of running gear during train run 

and use the data obtained as an input for simulation calculations. Measurements were 

carried out on the modernized railway passenger wagon series Bdghmeer no. 61 56 28-70 

013-5 during the run on the selected section Prievidza-Leopoldov and Leopoldov-

Bratislava track corridor. The passenger rail wagon was placed at the end of the train and 

locked for experimental purposes. The Bdghmeer four-axle wagon is designed for the 

transport of passengers and luggage and is also adapted for the transport of immobile 

passengers. Measurement was performed using the Pulse 3560 B measurement system from 

Brüel & Kjær. Three measuring microphones Brüel & Kjær, type 4188, were used for the 

measurements. Signal data for frequency analyses and sound pressure levels from three 

microphones were recorded during the measurement. The time of one measurement was 60 

seconds for both measured quantities. 

Measuring microphone no. 1 was placed in the exterior just above the ground and fixed 

to the floor frame structure to detect noise emission levels and frequency noise analysis of 

the source, the GP 200 bogie, during running at different speeds on the selected track 

section. Measuring microphone no. 2 was located in the disabled section in the rear of the 



wagon in the direction of travel, directly above the bogie. Data recorded by measuring 

microphone no. 1 and no. 2 could be compared immediately to determine the acoustic 

properties of the floor of the passenger wagon and the entire car body structure and at the 

same time they served as input data for simulation of  the transmission of acoustic energy 

through the car body structure. The experimental results were confronted with the results of 

the simulations. Measuring microphone no. 3 was located in the aisle at a height of 1.2m 

above the floor, near the door and the lifting platform for access of disabled passengers. 

The measured data were informative in order to assess the noise levels at different locations 

of the structure of the investigated wagon. 

The measurement was not intended only to obtain sufficient data for simulation 

calculations but also for eventual studies and identification of the dynamic track effects and 

running speed on the noise emitted by the rolling stock. In each of the track sections, ten 

measurements were carried out and, due to an objective assessment of the impact of the 

speed and track dynamics of the track sections on the noise in the interior of the passenger 

railway wagon, the data were further processed and the determined the so called mean 

values of the sound pressure levels recorded in relation to time and frequency during 

running on different selected track sections, which differed by the track structure and the 

train speed. By comparing the resulting frequency and sound pressure levels measured by 

the M2 and M3 measuring microphones on the track sections concerned, we experience the 

significant effect of the track condition on the interior noise in the passenger rail wagon. In 

the case of the resulting frequency analyses recorded by the M2 measuring microphone, the 

difference is almost 10 to 15 dB in the whole spectrum. Thus by measuring we have found 

a considerable influence of the technical condition of the track on the noise in the interior of 

the passenger railway wagon. The impact of the technical condition of the track on the 

noise in the interior of the passenger car is much higher than the effect of the running speed 

on the increase of the noise of aerodynamic origin. 

Conclusions 

As the most important outputs from the research activities in the above mentioned issues it 

can be summarized: 

- Creating new models showing the sound reduction and absorptive properties of porous 

materials and determining the energy balance of the acoustic energy transfer through the 

porous microstructure of the material. 

- Application of porous acoustics in the simulation of acoustic energy transmission 

through the structure of the floor of a railway passenger wagon. 

- Performing acoustic analysis at the positions of individual sections representing the 

different shape and dimensional composition of the sandwich panel structure using 

simulation in the "COMSOL Multiphysics 5.0" environment. 

- Original results of simulation in the form of frequency spectra of sound transition in the 

original and newly proposed material structure of the floor and walls of the railway 

passenger wagon. 

- Qualitative evaluation and comparison of the results of simulation models in relation to 

the current state and the proposed application of new STERED® 200 material in the car 

body structure and the use of STERED® 250 as an alternative to a wooden grate. 
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