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Abstract. The method of numerical modeling of heat transfer between three-

dimensional objects being in contact is described in the paper. Presented approach is 

based on the finite element method (FEM) with independent spatial discretization of 

considered regions. The gap between external surfaces of the interacting objects has 

variable width and is filled with gas or liquid. The medium in the gap introduces 

thermal resistance into heat transfer process. The mathematical model of considered 

problem is based on the equation of heat diffusion supplemented by the appropriate 

initial and boundary conditions. The deformations of the regions resulting from the 

thermally dependent changes of their volumes are also included in the model. The 

results of numerical simulations are presented and discussed. 
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1 Introduction  

Machine parts during the work come into thermal and mechanical contact. Mechanical 

contact is the result of the interactions of their external boundaries. These interactions may 

be caused by motion or thermal deformations. The ideal thermal contact occurs when the 

width of the gap equals zero. If the gap width is greater than zero the contact with thermal 

resistance is observed. The mathematical model of the heat transfer process is based on the 

heat conductivity equation with appropriate boundary and initial conditions. A fourth type 

of boundary condition plays very important role in the mathematical model of such process. 

One can distinguish two kinds of such mathematical condition describing the ideal contact 

or the contact with the presence of the gap of variable width, filled with gaseous or liquid 

medium.  

Mathematical descriptions of the non-ideal thermal contact was described for the first 

time in [1]. Analytical solutions of the problem were presented in [2]. Numerical solution 

of heat transport using finite difference method (FDM) was shown in [3]. Nowadays many 

scientists from different branches of science investigate the process of the heat transport 
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through the gap. For example the mathematical description of the considered phenomenon 

is required in the numerical analysis of the solidification in the mold [4, 5]. Currently many 

advanced numerical methods such as the FEM are used to model complex mechanical 

phenomena [6-9]. Numerical investigations based on the FEM in the case of air gap 

formation process during solidification of pure metal was discussed in [10].  

Presented mathematical model also contains the description of thermal deformations of 

considered regions which are needed to calculation of the local width of the gap.  

2 Mathematical model 

Fig.1 presents two objects Ω1 and Ω2 in contact. Boundaries Γ1, Γ2 lie close together 

forming a gap of width h. The width of the gap depends on the coordinates x, y, z and also 

may change according to time. At the boundaries Γ5, Γ6 temperature is defined while Γ3, Γ4 

are fixed. The process of heat transfer in Ω1 and Ω2 is transient and the objects are subjected 

to the thermal deformations. 

 

 

Fig. 1. Scheme of the problem 

The governing equations of presented model are as follows: 

 the heat conduction equation describing transient heat transfer in the three-dimensional 

volume 
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 the equilibrium equations 

 

     

     

     

0

0

0














































zyx

zyx

zyx

i
z

i
yz

i
xz

i
yz

i
y

i
xy

i
xz

i
xy

i
x







 (2) 



where λ is the coefficient of thermal conductivity, cρ - volumetric heat capacity, T - 

temperature, σx, σy, σz, τxy, τxz, τyz - the components of symmetrical stress tensor, t – time, x, 

y, z  – Cartesian coordinates, i - index denoting volume 1 or 2.  

Equation (1) is supplemented by the following boundary and initial conditions: 

 heat flux at the contact boundaries 
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 known temperature at the boundaries Γ5, Γ6 
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 initial temperature in the volumes 1 and 2 
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where λg denotes thermal conductivity of the medium filling the gap, h is the local width 

of the gap, n1, n2 are the local directions of the vectors normal to the boundaries Γ1, Γ2, Tb
(1)

, 

Tb
(2)

 - the local temperatures of the volumes Ω1, Ω2 at the contact boundaries, T0
(1)

, T0
(2)

 - 

initial temperature of the volumes Ω1, Ω2. 

There are 6 unknowns in the equations (2), so they need to be transformed into 

displacement-dependent functions. This is done by using the following relations: 

 relations between the stress and strain tensor components  
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 relations between the strain tensor components and the displacements 
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where: εx, εy, εz, γxy, γxz, γyz are the components of symmetrical strain tensor, ux, uy, uz - 

the components of displacement vector, E - Young's modulus, ν - Poisson's ratio, α - the 

linear thermal expansion coefficient, ΔT - the difference between the reference and the 

current temperatures ΔT=T-Tref. 

Using relations (7) in equations (6) and then inserting the stress components into 

equilibrium equations (2), the following equations are obtained: 
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where f1, f2, f3, f4 are defined in the following way: 
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Equations (8) are supplemented by the following boundary conditions: 
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3 Numerical model 

The numerical model of presented problem is based on the finite element method [11] and 

derived from the criterion of the method of weighted residuals [12]. Equations (1) and (8) 

are multiplied by the weighting function w and integrated over the volume Ωi . Equations 

(1) and (8) written in the weak form are shown below: 
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According to the Galerkin method the weighting function w is the same as the shape 

functions of the finite elements used during meshing operation. Time discretization of 

equation (11) is based on the implicit Euler method. Final form of the global FEM 

equations is presented below: 
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where KT is the global thermal conductivity matrix, MT - the global thermal capacity 

matrix, BT - global vector associated with the thermal boundary conditions, T - vector of 

unknown nodal temperatures, f - time level, KD - the global stiffness matrix, BD - vector 

where known boundary displacements are stored, u - vector of unknown nodal 

displacements. 

The solution of equation (15) is obtained at every step through an iterative process, 

independently in each region. Calculated temperatures are then used to find thermal 

deformations of each object. It is crucial to properly incorporate the condition (3) to the  

heat transport solution process [13]. During the deformations of Ω1 and Ω2 relative 

positions of objects and the width of the gap between them are changing. Because the 

global set of equations is built and solved independently for each region the presented 

approach is based on the disconnected finite element meshes. 

4 Example of calculation  

Two cuboids of the same dimensions 0.02x0.1x0.1 m are considered (Fig. 2). Object on the 

left is made of steel and its initial temperature T0=600 K. Object on the right is initially 

colder, its temperature T0=300 K and the material from which its made is copper. Both 



cuboids are fixed at their bottoms, ux  = uy = uz = 0 m. Between them is a gap of initial width 

h=0.1 mm and thermal conductivity λg=0.5 J∙s
-1

∙m
-1

∙K
-1

. 

 

 

Fig. 2. Material properties, boundary and initial conditions used in calculations 

 

a) b) c) d) 

Fig. 3. Thermal deformations of the cuboids (def_factor=20) a) t=1 s, b) t=5 s, c) t=10 s, d) t=17 s  

 

a) b) c) d) 

Temperature [K] 

 

Fig. 4. Temperature in the steel cuboid (def_factor=20) a) t=1 s, b) t=5 s, c) t=10 s, d) t=17 s 



According to the boundary and initial conditions heat transfer between the objects and 

their thermal deformations are simulated with the use of an original computer program 

written in C++. Finite element meshes are made with the use of mesh generator GMSH 2.9. 

Left cuboid is divided into 49498 tetrahedrons with 11468 nodes, the right one has 50315 

tetrahedral elements and 11602 nodes. Time step used in the calculation process Δt = 0.1 s, 

total time of the analysis ttotal = 17 s. 

Fig. 3a-d show finite element meshes deformed due to temperature after 1, 5, 10, 17 s. 

The gap is widest in the upper part of the cuboids, it reaches the highest value 0f 0.7 mm 

after 5 s (Fig3.b). Fig. 4a-d show instantaneous temperature distributions in the steel 

cuboid. The impact of the local gap width on the temperature distribution on the wall in 

contact with the copper cuboid is evident. In both figures the deformations are exaggerated 

(def_factor = 20). 

Conclusions 

The numerical method of heat transfer during the contact of two three-dimensional objects 

taking into account thermal deformations was presented. The method using the independent 

spatial discretization for each volume saves a lot of operational memory because of 

sequential solving of the sets of equations. Obtained results proves significant impact of the 

variable width of the gap on the global heat transfer. Presented approach may be useful in 

computer simulations of various processes such as the solidification of the molten metal in 

the permanent mold. Further work will be focused on the expansion of the numerical model 

by the mechanical interaction between the objects. 
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