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Abstract. The work is devoted to methods of analysis of vibrations and stability of 

discrete-continuous, multi-parameter models of beams, shafts, rotors, vanes, 

converting to homogeneous and one-dimensional. The properties of Cauchy's 

influence function and the characteristic series method were used to solve the 

boundary problem. It has been shown that the methods are an effective tool for 

solving boundary problems described by ordinary fourth- and second-order 

differential equations with variable parameters. Particular attention should be paid to 

the solution of the border problem of two-parameter elastic systems with variable 

distribution of parameters. Universal beam-specific equations with typical support 

conditions including vertical support, which do not depend on beam shape and axial 

load type, are recorded. The shape and type of load are considered in the form of an 

impact function that corresponds to any change in cross-section of the support and 

continuous axial load, so that the functions describing the stiffness, the mass and the 

continuous load are complete. As a result of the solution of the boundary vibration 

problem of freely bent support and any change in its cross-section, loaded with any 

longitudinal load, arranged on the resilient substrate, strict relations between the own 

frequency parameters and the load parameters were derived. Using the methods, 

simple calculations were made, easy to use in engineering practice and conditions of 

use were given. Experimental studies have confirmed the high accuracy of theoretical 

calculations using the proposed methods and formulas. 
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1 Introduction 

Components such as turbine blades, helicopter carrier blades, engine rotors, machine 

spindles, crane booms, drilling rigs, masts can be modeled with beams of variable 

distribution of parameters, the most important of which are: rigidity, mass, modulus of 

elasticity, cross section, substrate elasticity Longitudinal load. Sometimes discrete 

inclusions in the distribution of mass and in the resilient substrate should also be 

considered. We need to know the relevant dynamic characteristics, such as: values and 
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forms of our own vibrations, and critical loads, in the loss of stability of the divergence and 

flatter type [1-3].  

The exact solution of the abovementioned, in the general case, is possible in only a few 

specific cases. In the paper [4], the boundary of vibration of the cantilevered cone with the 

Bessel function is solved. The output equation of the vibration of flexible beams with a 

power-varying cross-section may be in the form of the Euler equation and then the general 

integral is expressed by the elementary functions [5-7]. 

The analytical and above all numerical methods used to test such beams are [8-10]. 

Using this method, it is quite difficult to assess the accuracy of the calculation of the 

required characteristics. 

Among the numerical methods, finite element method and finite difference method are 

widely used [11, 12]. Examples of analytical methods are variation methods that, although 

they do not guarantee high accuracy; because of the specific form of vibrations, they give a 

very simple form of solution [10]. It is impossible not to mention the method of subsequent 

approximations. On the basis of this, Mike has derived the characteristic equation of the 

cantilever beam with varying cross section, but it has a very complicated form [5]. 

It is noted that there are no works that take into account several variable parameters at 

the same time, therefore the proposal of Zoryj L.M. and Jaroszewicz J. to apply for this 

purpose the method of characteristic series. This proposal was developed in joint work [2-

7]. It must be clarified that Bernstein's previously proposed "spectral function" method was 

used only to analyze systems with fixed parameters without considering friction [10, 13]. 

At work [6] Zoryj L.M. He gave the general way of building universal determinants in the 

case of multi-parameter springs. The proposed method was then applied to the typical 

boundary problems described by the second and fourth order ordinary differential 

equations. The authors of this work [10,11] have used a series of characteristic methods to 

solve the boundary free-floating edge problem of a cantilever beam with a freely varying 

cross section. General formulas have been obtained which characterize the characteristic 

coefficients used in [5] for vibration analysis of cantilever beam of different shapes. Work 

[5] has also derived models that can be applied in engineering practice to calculate the basic 

vibration frequencies of the flexible beams and their conditions of use. The authors 

practically use the important property of the Cauchy function, published by L. Zoryj in 

1978, which indicates that the function of influence and its subsequent derivative with 

respect to the parameter always form the basic arrangement of ordinary differential 

equation with variable parameters. 

In this chapter, the boundary problem of the resilient spring flexing support beams has 

been formulated: flexural stiffness, continuous mass, longitudinal load, resilient substrate, 

which also contains discrete inclusions such as concentrated masses, resilient supports. 

The replacement model of the beam in question is shown in Figure 1, on which it is 

marked: f(x) – Rigid stiffness; (x) – continuous mases distribution; k(x) – stiffness of the 

elastic substrate; p(x) – longitudinal loads; b(x) – external friction; N(x) – denotes 

distributed axial loads; M b ci i i, , – discrete inclusions in continuous mass distribution, in 

the external friction and in the resilient substrate, applied in points xi ; l – beam length; x, w 

– co-ordinates. As a result, the general form of the characteristic equation was obtained, on 

the basis of which it is possible to calculate the estimate of the frequencies of the own 

vibration and the estimates of the critical forces. Several typical examples, often found in 

engineering practice, were considered. 

 



 
Fig. 1. The beam model 

In particularly cases flexural rigidity and continuous mases may have form likes: f(x) = 

EJ0     
 

 
   and M(x) =       

 

 
 
 

 ,    coefficient of conquers; J0- moment of inertia 

and mases of section x=0.  

2 Definition of the problem 
Vibrations of bent rods of length l that occur in the plane Oyx, can be described using the 

equation [4, 5]:  
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Where the signs are in accordance with Figure 1 and the previous description. 

Equation (1) is considered under typical boundary conditions, two at each end of the bar 

and specified initial conditions (2). We will consider tasks of free vibration under typical 

boundary conditions, in the absence of external constraint, where q (x, t) ≡ 0. Separating 

variables (x, t) we come to the equation: 
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The following boundary conditions are considered: 
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By substituting the general form of the solution for the above bounded boundary 

conditions (3,4,5,6) we obtain the following characteristic equations [9]: 

1) For a bar with two fixed ends the problem (2), (3): 

          (7) 

2) For a bar with a left-right and a right freely supported issue (2), (4): 

           (8) 

3) For a bar with two articulated-based issues (2), (5) clamped: 

           (9) 

4) For the bracket issue (2), (6) supported cantilever: 

          (10) 

 In the above equations, Cauchy's derivatives of their derivatives are used [10]: 
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where:   (x,α) – fundamental solution of the equation (2), Dots "." Denote derivatives 

with respect to α    " " denote derivatives with respect to x. 

We will now assume, as in the case of the string vibration task, that there is 

interdependence [5]. Then in place of (2) the equation [5] should be considered: 

                ∑                  
    (14) 

where 

        
         (15) 

Mi –size of concentrated mass, 

bi, ci – coefficients of friction and stiffness of the spring at the coordinate xi., 
 

In this case, the boundary conditions (3-6) correspond to the characteristic equations (7-

10) corresponding to the given case, that is, the equation (14) of the functions F, S, and R 

obtained from (11), (12), (13) By replacement instead   (x,α) solutions             
        , determined by dependency (1.29 saved in [5]), wherein ψs(x) is the fundamental 

solution of the equation: 

                    (16) 

3 Examples of survey requirements with no quantity will come 
freedoms 

We will examine some simple examples. Let Yυ 1  N x  ≡ . Then based on the formula 

(1.29 saved in [5]) we get: 
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where:  
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Substitute (17) for the characteristic equation (11), which corresponds to the beam with 

two fixed ends, from which, after some transformations, we obtain: 
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where: 
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Based on equations (8) and (9) considering (17 - 20) we find: 
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and finally: 
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Using (17) and proceeding analogously to the above, we obtain the following pattern for 

the bracket, which carries the resiliently attached mass at the end of the equation (10) 

/x1=l/: 
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Dependencies (19) and (21 - 23) which represent the square equations with respect to 

the characteristic index , allows you to specify frequencies / complex / extinguishing 

vibrations corresponding to systems with one degree of freedom for any given flexural 

stiffness f(x)>0 /0<x<l/ and coefficient of friction b1> 0, satisfactory condition of 

continuation of vibration. We will note that in the case f(x) = 0 = EJ0 = const., b1= c1 = 0, 

Based on these relationships it is easy to come up with patterns known from the literature 

for the squares of the frequencies of the corresponding vibrations, the bars in question, and 

also for the critical speeds of the shafts with the disk. 

If instead of a concentrated mass  ̃ at the point ξ there is a spring attached to the mass 

bar μ on spring with stiffness  ̃ and damper with friction coefficient  ̃, is a parameter αi 

instead (15) should be specified in the form: 

    ̃    ̃ 
    ̃    ̃    ̃ 

    ̃    ̃ 
    (24) 

In the case of the presence at the point xi of both masses / rod and rod spring / add the 

total parameter –       ̃ . 

For example, for a support that carries a fixed mass M on its end with an elastic support 

with a stiffness c and a coefficient of friction b and an additional spring loaded mass  ̃,  

with stiffness of spring c with wavelength and coefficient of friction  ̃   based on (23) we 

obtain the following equation: 
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Hence, it is possible to determine the frequency of a series of corresponding systems 

with two degrees of freedom, and in particular we come to comply with the solutions 

known from the literature of tasks. 

As a next example we will consider the task of free vibration without a mass beam with 

freely supported ends bearing the masses at the axes xi=1,2,3 And with elastic support bars 

at these points. General solution of the equation (14) if the longitudinal force does not work 

N x  ≡  has character (1.31 saved in [5]); equations Q3s(s) for s=1,4 they are referred to as 

the pattern accordingly (1.29 saved in [5]) under the following conditions: 

                      (26) 

where: 

Function   (x,α) is defined by the integral (18). Assuming a parameter α equal 0 

substituting (1.31 saved in [5]) to the conditions at the left end y”       y”’        we find 

out that A3=0 i A4=0. 

Limit conditions at the right end give a linear system of homogeneous algebraic 

equations with respect to constants A1,A2. We obtain the characteristic equation in the 

following form: 
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Note that at x1=0 calculations are much simpler, we assume that x1=0 and after doing 

some transformations from (27) we get: 
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where: 
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Based on the above equation (28), it is possible to determine the characteristic indices, 

i.e., the customary frequencies of a plurality of suitable three, two, one degrees of freedom, 

critical shaft speed with a disk, and also with respect to (24) and exemplary (25) discrete 

Number of degrees of freedom / up to six [11]/. Let, for example, α1= α2= , instead of (28) 

we obtain the following equation: 

   
    {  [                ]              }     (30) 

For x2=l-a, x3=l, f=EJ0=const., α3=M
2
 we have respectively:  21=1/6l-a3f-1,  31=l3/6f, 

 32=a3/6f and based on (30) we determine the critical speed of the light shaft with discs 

occurring at the free end: 
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Based on (28), it is also possible to obtain, in specific cases, the question of the 

conditions under which the elastic supports are permissible to replace rigid, rigid stiffness 

which for non-homogeneous sections of the beam can be assumed to be large. 

Let's, for example α1= α3=-c, α2=-M2. With this equation (28) for the beam with 

constant stiffness, we obtain the following pattern for a small beam of length l with elastic 

supports at the ends, which carries the mass M at the point x2=
 

 
l: 
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The above pattern (32) agrees with the solution of a known task [10]. Of course, at 

1/24cl3/EJ<<1 the beam can be considered absolutely rigid. 

If, for example, the stiffness of the beam section between the points of its axis x2 i x3 

Far outstrips stiffness between points x1 i x2, it's in the equation (28) should be assumed 

 32=0,  31=  21, If the beam can be rigid, then in this expression in cubes is equal to zero. 

In the latter case, it is also possible to consider the left end freely supported if it is directed 

α1 to infinity. In this equation  28  looks: 

     
      

     (33) 

Hence it is easy to come to a range of tasks with rigid rods with masses and resilient 

supports. 

Table 1. Results of calculations of lower a0
2 and upper a0

2 estimators of base frequency for square 

cone Cn = 3 

No.  
Analytical Numerical 

 [%] 
 

a0
2 0

2 a0
2 a0

2 Experiment 

1 2 3 4 5 6 7 8 

1 

2 

3 

4 

5 

6 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

12.36 

13.01 

13.96 

15.46 

18.37 

28.03 

12.36 

13.02 

13.97 

15.49 

18.46 

28.52 

12.36 

13.01 

13.96 

15.46 

18.37 

29.94 

12.36 

13.02 

13.97 

15.49 

18.46 

31.29 

0.02 

0 

0 

0 

0 

7.66 

– 

14.02 

– 

14.43 

– 

32.03 

 

 

Fig. 2. Schematic diagram of the test stand by resonance method of flexural vibrations of cone with 

masses on end 

 



Oscilloscope 8, oscilloscope 9 and pulse 10 are used to measure the vibration 

frequencies of the sample, which is realized by means of a sensor 7, oscilloscope 8, 

oscilloscope 9, and pulse counter 10. When equalizing the vibration force of the 

oscilloscope 9, When moving through the resonance, the ellipse is overturned. The LC 3 

resonator circuit is necessary because of the insufficient power of the amplifier 2. The 

source of vibrations is electromagnet 5 supplied with variable frequency current, 1 - 

generator, 2 - power amplifier, 3 LC resonant system. The electromagnet 5 excites the 

flexural vibrations of the sample 6, rigidly fixed at the end of the support 4. 

Conclusion 

The proposed general expressions allow to obtain closed formulas for the second and third 

coefficients of a series characteristic for any function of stiffness from which it is required 

to be complete and have a finite value in the interval (0, l). 

The presented methods (analytical and numerical) for the calculation of coefficients of a 

series of characteristics, based on general patterns, provide high accuracy in all cases 

considered (Table 1). It can be expected that equally high accuracy of calculations will be 

obtained for beam with focus on the end of other transverse cross sectional variations. Only 

cases in which the stiffness function at the free end tends to zero requires calculating the 

limit values of the series coefficients. 

In the case of beams and shafts, even a relatively small mass at the ends of the beams, 

significantly lowers the base frequency. Coefficient of convergence    this increases the 

frequency of beams without mass or very low mass (  0,001). Section coefficients n i m 

they show a significant effect on the baseline rate only at  = 0 and close to zero. 

References 

1. R. Panuszka, T. Uhl, Wyznaczenie częstości rezonansowych ciąg-łych układów 

mechanicznych na przykładzie belki i płyty drgającej. Archiwum Budowy Maszyn, 

Tom XXX 1-2, 111-123 (1983) 

2. J. Jaroszewicz, L. M. Zoryj, Drgania giętne belki wspornikowej o zmiennym przekroju. 

Rozprawy Inżynierskie 33 (4), 537-547 (1985) 

3. J. H. Lau, Vibration freqencies of tapered  bars with end mass. Journal  of Applied 

Mechanics 51, 179-181 (1984) 

4. J. Jaroszewicz, L. M. Zoryj, Izgibnyje kolebanija i dinamičeskaja ustojčivost’ balok 

s peremennymi parametrami. Prikladnaja mechanika, Kijev 30 (9), 75-81 (1994b) 

5. J. Jaroszewicz, L. M. Zoryji, Metody analizy drgań i statecznoœci kontynualno-

dyskretnych układów mechanicznych. Rozprawy Naukowe Politechniki Białostockiej 

54  Białystok  126  1997  

6. L. M. Zoryj, Ob universalnych charakteristiceskich uravenijach v zadacach kolebanij i 

ustojcivosti uprugich sistem. Mechanika Tverdogo Tiela 6, 155-162 (1982) 

7. L. M. Zoryj, K teorii ustojcivosti sistem s raspredelonnymi parametrami. Dokl. AN 

USSR 11A, 992-995 (1986) 

8. J. Jaroszewicz, K.K. Żur, Ł. Dragun, The influence function in analysis of bending 

curve and reactions of elastic supports of beam with variable parameters. Journal of 

Theoretical and Applied Mechanics 52 (1), 247-255 (2014) 



9. J. Jaroszewicz, L. M. Zoryj, Investigation of the effect of axial loads on the transverse 

vibrations of a vertical cantilever with variable parameters. Prikladnaja Mechanika, 

International Applied Mechanics 36 (9), 129-137 (2000) 

10. J. Jaroszewicz, Ł. Dragun, Limitation of Cauchy function method in analysis for double 

estimators of free transversal vibration of cantilever tapered shafts. Technical Sciences 

16 (2), 131-142 (2013) 

11. J. Jaroszewicz, L. Radziszewski, Ł. Dragun, The Study of the Effect of Static Axial 

Loads on Vertically-Mounted Tapered Cantilever Transverse Vibrations Using the 

Cauchy Function. Applied Mechanics and Materials 712, 49-54 (2015) 

12. W. Antoniuk, J. Jaroszewicz, L. Radziszewski, Ł. Dragun, Theoretical stress analysis-

based improvement of friction clutch disc manufacturing process. Czasopismo 

Techniczne. Mechanika,  Politechnika Krakowska 113 (4-M), 73-79 (2016) 

13. T. Hoang, D. Duhamel, G. Foret, H.P. Yin, P. Joyezb, R. Caby, Calculation of force 

distribution for a periodically supported beam subjected to moving loads. Journal of 

Soundand Vibration 388, 327-338 (2017) 

 


