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Abstract. The presented works concerned launching of an angular positioner 

powered by an electromagnetic actuator, designed for performing angular 

micromovements within a range of few microradians. The principle of operation is 

based on balancing the electromagnetic torque of the motor with a torque that is 

twisting a compliant element. As electrodynamic actuators have no distinguished 

controlled positions, therefore in typical positioning systems desired positions are 

obtained applying a closed-loop position control. Usually, such systems employ also a 

feedback (dumping) related to velocity of the moving elements, what simplifies 

forming of dynamics of the system. The design of the physical model employs a DC 

micromotor, whose rotor is coupled with a torsional torquemeter. A feedback signal is 

generated by resistive strain gauges. The paper presents a mathematical model of the 

positioning system, results of simulation study as well as results of experimental 

study. The simulation study indicates that it is possible to select such design features 

and such type of the micoromotor that a high dynamics of positioning is ensured. 
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1 Introduction 

Miniature positioning drives that implement angular displacement with respect to one or 

more axes are used primarily in optical positioning systems. They are used for accurate, 

often quick positioning of mirrors or other optical elements. For systems with low 

dynamics, it is possible to use drives with classic rotary motors with gears characterized by 

high accuracy and high ratios. Both DC and stepping motors are used in such drives. An 

advantage of stepping motors is their ability to operate in open loop control. . SMA 

actuators are also used in low dynamic systems.  

Often, however, the requirements for movement ranges include several dozen mrad, 

with the dynamics of work of, for example several hundred Hz. The use of piezoelectric 

elements makes it possible to achieve such parameters (these are often line actuators 

operating on an arm relative to the axis of rotation). Such positioners are also built as the 

electromagnetic actuators (VCM motors) with specially designed excitation combinations 
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(permanent magnets) and windings, supplemented by suspension (often air gap 

suspension). 

2 Idea of the positioner with torque balance 

It was considered possible to build an electrodynamic positioner. The concept of 

mechanical structure of such a system and versions of its control has been developed. The 

use of an electrodynamic actuator, such as a typical, commercial DC micromotor with a 

coreless rotor, requires a high resolution rotor angular position transducer, far beyond the 

capabilities of conventional incremental converters. 

For this reason, it has been proposed to use strain gauges measuring the deformation of 

a twisted mechanical element rigidly coupled to an rotor. The driven element (e.g. mirror) 

is attached to the torsion element at the location where its largest angular displacement 

occurs.  

The ability to shape the correct torsional rigidity and high bending stiffness is 

guaranteed by the so called “drilled cross” elements known from the torque transducers' 
construction. The scheme of the proposed solution is shown in Figure 1. 

 

 

Fig. 1. Scheme of the positioner with electromagnetic activation on basis DC micromotor 

According to the above assumptions, this system has the functional structure shown in 

Figure 2. The micromotor tracks the position by twisting the mechanical element to which 

the scanner table is connected. The amplified differential signal is the result of subtracting 

the load from the load cell transducers from the position signal. The load of the motor is the 

sum of the static torque (originating from twisting the element) and dynamic torque 

(originating from acceleration of the displaced parts). Preliminary selection of system 

parameters based on drive and measurement drive catalogue data leads to an estimate of the 

approximate native vibration frequencies of the uninhibited system, which is approximately 

200 Hz. 

Two types of scanner operation are possible with the proposed system: 

- with feedback from the deformation signal of the torsion spring, 

- without feedback, based on the linear dependence of the torque developed by the motor 

against the current flowing in its winding. In the latter case, it is based on the linear 

mechanical characteristics of the twisted element. 

 

 



 

Fig. 2. Functional block diagram of the analyzed system 

3 Test stand and physically experiments  

For preliminary experimental research, a test stand was assembled using a DC micromotor 

with permanent magnet in stator and an ironless rotor in form of a cylinder, characterised 

by a rapid mechanical response.  

The shaft of the micromotor was coupled by a bellows coupling (with significant torsion 

stiffness) with a flexible element. As a susceptible flexible element, a system of 4 flat 

springs, constituting a mechanical transducer of a stationary torque meter (SPM type, 

developed at the Institute), was used. The torque generated by the micromotor forces the 

mechanical transducer to be converted by an electric transducer (strain gauge bridge) into 

an electrical signal which is registered in the measurement system. 

Due to the proportionality of the mechanical structure and processing circuit, the 

voltage at the output of the bridge is the information about the twisting of the spring system 

and the angular displacement of the shaft of the micro motor. There is also the possibility to 

control the output of the angular positioner.  

The block diagram of the stand is shown in Fig. 3, its view in Fig. 4. Figure 5 shows the 

close-up of the spring system and its schematic view with marked places of strain gauge. 

The micromotor used in experiments was characterized by a startup torque of 0.054 

N·m (when the rotation speed is zero) at 12 V supply voltage. The voltage reduction 

resulted in a proportional reduction in the startup torque. 

A SPM-100 stationary torque-meter (design in IM&P) with a measuring range of 0.1 

N·m and a torsional stiffness of mechanical transducer cSPM = 54 N·m/rad was used in the 

test stand. In the case of the applied micromotor, it was possible to achieve the maximum 

angle of twist of the mechanical transducer φSPM = 1 mrad (3.4'). This is not, however, the 

value of twisting of the modelled positioner. Due to the use of bellows coupling, the 

resulting rigidity value of the serial system results from the formula: 

                   =45,76 N∙m/rad  (1) 

Where: c - torsional stiffness, cSPM - torsion stiffness, cC - bellows coupling torsion 

rigidity (300 N·m/rad). 
The net maximum angle of the positioner model (with 12 V supply of the used DC 

micromotor) was therefore φmax = 1.18 mrad (4.06'). 



The torque conversion processing constant is AT = 0.381 Nm / V, with respect to the 

angular movement of the positioner, the processing constant has the value Aφ = 8.36 

mrad/V (28.74'/V) 

 

Fig. 3. Block diagram of the test stand – model of the positioner 

1 – DC micromotor, 2 – shaft of the micromotor, 3 – coupling (spring bellow type), 4 – shaft of the 

stationary torque meter, 5 – mechanical transducer of the torque meter, S – supply, I/O – non contact, 

Hall – effect current/voltage transducer, D) – digitally oscilloscope, B – strain gauge bridge  

 

  

Fig. 4. View of electromechanical components of the test stand (model of the positioned) 

1 – DC micromotor, 2 – coupling, 3 –stationary torque meter 
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Fig. 5. System of 4 flat springs, constituting a mechanical transducer of a stationary torque meter 

(SPM type)  

Figure 6 shows the time waveform of the current in the winding of the micromotor after 

stepped voltage supply with the visualisation of the time constant of the process. By 

properly selecting the electrical system parameters and operating mode of the power 

supply, it is possible to significantly shorten the time constant value. Fig. 7 shows the 

positioning leading to selected angular positions. 
 

 

Fig. 6. Current course during step of the voltage supply (12 V; the time constant value is 280 µs) 
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Fig. 7. Positioning  

a) from position 0 to 0.295 mrad,     b) from position 0 to 0,885 mrad 

 

Fig. 8 shows cyclic switching between zero level and maximum angular deviation (1.18 

mrad)  

 

Fig. 8. Sequence of jumps between zero and max position of the positioner 

4 Mathematical model  

A mathematical model has been developed and includes: a classic DC motor model (which 

consists of two equations: balance of torque (2) and balance of voltages (3)), a torsion 

model in the form of a force torque linearly dependent on the angular displacement of the 

element and the damping moment proportional to the velocity of motion (4) and the control 

system model consists of equation of the strain gauge bridge channel dynamics (5) and 

equation of  controller and the power amplifier (modeled as a PID regulator) – (6): 

 
)M)

t
sgn(M(

t
K

t
)JJ(iK LFD2LsT 










d

d

d

d

d

d
2

 ,  (2) 

 t
K

t

i
LiRu Et

d

d

d

d 


 , (3) 



 t
BCM SPMSPML

d

d 
 (4) 

 
  kU

t

U
B

d

d
B

 (5) 

 

       








  td

td
Ttdt

T

1
tktu

t

0

d

i

p


 (6) 

where the symbols mean following: i - armature current, JL  - moment of inertia of 

positioning elements, Js  - moment of inertia of rotor of micromotor, KD  - constant of 

viscous damping in the motor, KE  - voltage constant, , KT  - torque constant, L - inductance 

of armature windings, MF - motor friction torque, ML  - load torque, Rt - total resistance of 

armature circuit, u - supply voltage, φ - angular displacement of motor rotor, CSPM – 

torsional stiffness of the spring system, BSPM – constant of viscous damping in the spring 

system, UB – voltage signal from strain gauges bridge (angular position signal), τ – time 

constant in low-pass filtering system, k – coefficient in the strain gauge bridge, kp – gain 

coefficient, T
i
 - integral time, Td - derivative time, ζ - the difference signal. 

5 Simulation tests 

Simulation models are written parallel in two software environments/languages: 

Matlab/Simulink (see Fig. 9) and AMIL. 

 

Fig. 8. Simulink model of the positioner  

Sample results showing the effect of changes of dumping coefficient are shown in 

Fig. 9.  



 

 

 

 

Fig. 9. Simulation of the positioning: a, c – current, b, d – angle of twist; c, d - change of 

dumping coefficient (multiplication by 10) 
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Conclusions 

Design of an angular positioner with a range of single mrad has been proposed. The 

demonstrator (physical model) as assembled and tested in test stand -. An example of a DC 

motor and a strain gauge torquemeter were used. However, the parameters of the applied 

micromotor were not optimized. Experiments have been performed indicating the 

positioning capability of up to 1 mrad, with positioning time up to 40 ms.  

The developed mathematical model and simulation software allow for optimization of 

the positioner and give the possibility e.g. of  selection of the micromotor from the catalog 

proposals and the design of a dedicated spring system. The development of the model is 

anticipated by taking into account thermal phenomena.  
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