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Abstract. In this paper an alternative J2 material model with isotropic hardening for 

finite-strain elastoplastic analyses is presented. The model is based on a new non-

linear continuum mechanical theory of finite deformations of elastoplastic media 

which allows us to describe the plastic flow in terms of various instances of the yield 

surface and corresponding stress measures in the initial and current configurations of 

the body. The approach also allows us to develop thermodynamically consistent 

material models in every respect. Consequently, the models not only do comply with 

the principles of material modelling, but also use constitutive equations, evolution 

equations and even ‘normality rules’ during return mapping which can be expressed 
in terms of power conjugate stress and strain measures or their objective rates. 

Therefore, such models and the results of the analyses employing them no longer 

depend on the description and the particularities of the material model formulation. 

Here we briefly present an improved version of our former material model capable of 

modelling ductile-to brittle failure mode transition and demonstrate the model in 

a numerical example using a fully coupled thermal-structural analysis. 
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1 Introduction  

Modelling materials within the framework of finite-strain thermoelastoplasticity represents 

a challenging task in computational mechanics. While plastic behaviour of structural 

materials within the framework of small-strain thermoelastoplasticity is now well 

understood, due to the fact, that small-strain flow plasticity theories work well and their 

results are in agreement with experiments, the same cannot be said for finite-strain flow 

plasticity theories [1]. Although innumerable material models for finite-strain 

elastoplasticity have by now been proposed [2-10], such models in general lack 

universality, as their analysis results depend on the description used in the model and the 

particularities of the model formulation. The modelling method might simply need some 
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developments in the non-linear continuum theory of finite deformations of elastoplastic 

media in order that the related theories could be considered to be complete. 

Contemporary flow plasticity theories in finite-strain phenomenological 

thermoelastoplasticity are either based on an additive decomposition of a strain rate tensor 

into an elastic part, a plastic part and a thermal part, or the multiplicative decomposition of 

a deformation gradient into an elastic part, a plastic part and a thermal part. The first type of 

theories are considered to be ad hoc extensions of infinitesimal flow plasticity theories into 

the area of finite deformations of elastic media to cover large displacements, but small 

strains of the deforming body. The related material models use an additive decomposition 

of a strain rate tensor into an elastic part, a plastic part and a thermal part and are based on a 

hypoelastic stress-strain relationship while utilizing the nonlinear continuum mechanical 

theory of elastic media to describe the plastic behaviour of the material [2, 11-16].  

The second type of flow plasticity theories are now generally accepted as “proper 
theories”, utilizing the theory of single-crystal plasticity, to describe the micromechanics of 

irreversible deformations in the material. The related material models use a multiplicative 

split of a deformation gradient into an elastic part, a plastic part and the thermal part, the 

classical flow plasticity models from small-strain elastoplasticity while utilizing the 

nonlinear continuum mechanical theory of elastic media to describe the plastic behaviour of 

the material [2, 3, 17-23]. 

Our ongoing research however has shown, that both types of the aforementioned 

theories are just variants of our modified nonlinear continuum theory of finite deformations 

of elastoplastic media, using an additive decomposition of the displacement field into an 

elastic part, a plastic part and a thermal part, which describes the plastic flow in terms of 

various instances of a yield surface and stress measures in the  initial or current 

configuration of the body. Moreover, the theory allows for the generalization of the 

contemporary flow plasticity theories and the development of alternative material models 

which are thermodynamically consistent in every respect. As a result, the analysis results of 

the models no longer depend on the particularities of the model formulation. We will show 

that the contemporary strain rate tensor additive decomposition based theories are in fact 

finite-strain theories, but they are constrained when the material model in them is defined in 

terms of a Cauchy stress tensor based yield surface in the current configuration of the body. 

That is why they appear as if they had mixed finite-strain small-strain formulations. The 

contemporary deformation gradient multiplicative split based theories on the other hand are 

rather incomplete and not quite consistent with the theory of nonlinear continuum 

mechanics, because they neglect the displacement fields in the definition of the deformation 

gradient and their parts. Moreover, the deformation gradient cannot have a Lagrangian form 

unless the Lagrangian displacement field has an additive decomposition. These are a few 

major implications of our nonlinear continuum theory of finite deformations of elastoplastic 

media. 

We will not present the non-linear continuum theory of elastoplastic media herein, nor 

will we explore any of its part. Our aim in this paper is to present an alternative J2 material 

model with isotropic hardening, which is the only model at present that meets the 

requirement of thermodynamic consistency. Here we briefly present a modified version of 

our former material model capable of imitating ductile-to brittle failure mode transition and 

demonstrate the model in a numerical example using a fully coupled thermal-structural 

analysis. 

 

 

 



2 Theory  

We will use Lagrangian description to describe the motion of a material particle of a 

deformable body. Though a single form is sufficient to define a thermodynamically 

consistent material model, we will provide all forms of the material model in terms of 

different stress and strain measures or their objective rates respectively, as similar forms 

cannot be found anywhere in the contemporary scientific literature.    

2.1 Kinematics of the deformation 

In order to describe the kinematics of deformation of an elastoplastic media, we assume that 

the material/Lagrangian displacement field can additively be decomposed into an elastic 

part, a plastic part and a thermal part 
el pl th  u u u u , where 
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    denote the coefficients of thermal expansion defined in the initial 
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T t TX  are the material temperature field and the 

reference temperature respectively. In this case neither the Green strain tensor 
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Here X  denotes the position vector of a material point and  x X u   is the position 

vector of the corresponding spatial point. The deformation gradient /    F I u X   

/ / /
el pl th         I u X u X u X  can then be expressed either as a function of the 



material displacement field u  alone, or as a function of its elastic
el

u , plastic 
pl

u  and 

thermal 
th

u  parts. The symbols , , / , ,
el pl th el pl th

E E E d d d  denote the elastic, the plastic and the 

thermal material/spatial strain rate tensors, in which the plastic flow is defined by Eqn. (5)1 

as a product of a plastic multiplier   and an appropriate yield surface normal /
P  P   in 

terms of the 1st Piola-Kirchhoff stress tensor P. Please note that we have also simplified the 

calculation of the material thermal strain rate tensor (Eqn. (4)1) in which we neglected the 

off-diagonal elements of the material gradient of the thermal velocity field (Eqn. (4)2) as 

their contribution is small unless the temperature gradient is high within the element. Here 

the symbol  
e
L  denotes the Lie derivative operator 
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t

         F F F FL of a spatial strain tensor. Please note, that the elastic, 

the plastic and the thermal strain rate tensors have similar forms as the strain rate tensor 

itself. Furthermore, it can be shown, that the plastic flow defined by Eqn. (5)1 is not 

constrained, resulting in Eqns. (3) and (6)3 respectively, as the only non-degenerated forms 

of the material and spatial plastic strain rate tensors. 

2.2 The constitutive equation of the material 

Proper formulation of a material model for finite-strain thermoelastoplasticity allows for the 

definition of a constitutive equation of the material in terms of various stress and strain 

measures or their objective rates in both the body’s initial and current configurations. As a 

result, the constitutive equation of a material cannot be unique, but has to have various 

forms. These however have to comply with the principles of material modelling, 

particularly meet the requirements of material objectivity and moreover be 

thermodynamically consistent in order that they defined the same material. Furthermore, 

because the additive decompositions defined by Eqns. (1), (6)1 exist in rate forms only, the 

constitutive equation too must have rate forms. In fact, Eqns. (7)-(10) define a true 

hypoelastic based thermoelastoplastic material model, which does not have a form in terms 

of finite strain measures. 

In this research we have modified our former material model capable of imitating 

ductile-to-brittle failure mode transition in a ductile material at high strain rates [24]. In 

agreement with the above, the rate form of the constitutive equation of the material can take 

any of the following forms: 
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In Eqns. (7)-(14) the symbols      , , , , , , ,
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Kirchhoff stress tensor, the 1st Piola-Kirchhoff stress tensor, the Kirchhoff stress tensor, the 

Cauchy stress tensor and their objective rates respectively. They are the time derivative of 

the 2nd Piola-Kirchhoff stress tensor S , the Lie derivative of the 1st Piola-Kirchhoff stress 
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PL , defined in terms of the Lie derivative operator of a mixed spatial-material 
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differentiation, but with rearranged terms of its final form. Here the fourth order material 

elasticity tensor
mat el

C  and the fourth order material viscosity tensor 
mat vis
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forms as the fourth order elasticity tensor of the St.-Venant Kirchhoff material [25], using 

two independent material parameters ,E   and ,
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E  respectively.  The fourth order 

spatial elasticity and viscosity tensors ,
spat el spat vis

C C  the can be determined in accordance 

with Eqns. (13) and (14), where  detJ  F  is the Jacobian of the deformation. The 

variable x  denotes the ratio of ductile and total damage increment [24]. Please also note 

that the objective rates      , , ,
P O T

S P Ĳ ıL L L transform in the same way from one form 

to another as do the stress tensors , , , ,S P Ĳ ı  which ensure that the formulation is 

thermodynamically consistent. 

2.3 On the thermodynamic consistency of the formulation 

It is essential that the formulation of the material model be thermodynamically consistent, 

as it ensures that the analysis results of the model is independent of the description and the 

particularities of the model formulation. The thermodynamic consistency of the formulation 

is then guaranteed by the appropriate transformations mentioned in the above and by the 

following equations ensuring the equivalence of the rate of change of the internal elastic 

deformation energy Eqn. (15), the internal thermal deformation energy Eqn. (16) and the 

internal plastic deformation energy Eqn. (17)  
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which eventually ensure the equivalence of the rate of change of the overall internal 

deformation energy [26].  

  



2.4 Mathematical modelling of the plastic flow  

Similarly as in the case of the rate forms of the constitutive equation of the material, proper 

formulation of a finite-strain flow plasticity theory allows for the description of the plastic 

flow in terms of various instances of a yield surface and corresponding stress measures in 

either the initial or current configuration of the body. Let the instances of the yield surface 

be defined as        , , , , , , ,
S S P P               S q P q Ĳ q ı q  in terms of 

the stress measures , , ,S P Ĳ ı   and a vector of internal variables q . After introducing similar 

kinematic equations as the ones defined by Eqns. (1)-(6), they serve a basis for the first 

nonlinear continuum mechanical theory of finite deformations of elastoplastic media. 

Moreover, since they define the same admissible stress space and the same plastic flow 

respectively, the instances of the yield surface cannot be independent of each other. In fact 

, , ,
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Furthermore, one of the yield surfaces , , ,
S P       has to be chosen as a reference 

yield surface to define the material model. It can be shown, that when
   or

  is chosen 

as a reference yield surface in the current configuration of the body, we recover the 

contemporary flow plasticity theories. Moreover, please note that Eqns. (18)1 and (18)2, 

represent constraint equations, making the contemporary additive decomposition based 

theories appear as if they had mixed finite-strain-small-strain formulations.    

Crucial part in finite-strain material modelling is thermodynamic consistency of the 

plastic flow. It ensures, that plastic deformations in the material are independent of the 

description and the particularities of the model formulation. The thermodynamic 

consistency of the plastic flow can then be expressed as follows 
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where
0

dV is an infinitesimal volume element in the body’s initial configuration and 

0
dv J dV    is its spatial counterpart. In terms of the above one can prove, that Eqn. (19) 

has an equivalent form which can be expressed as follows 
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which is known as the ‘normality rule’ and which defines a rate form of a 

thermodynamically consistent return mapping procedure. The result is of fundamental 

importance in computational mechanics as it states, how the plastic multiplier ought to be 

calculated during return mapping when finite-strain elastoplastic or thermoelastoplastic 

analysis is carried out. 

2.5 The reference yield surface 

It has been shown in the above, the choice of the reference yield surface governs the 

material model. As a result, alternative material models can be developed. In our research 

we have generalized the J2 flow plasticity theory with isotropic hardening, where we used 

the  ,
P P   P q , Eqn. (21)1 yield surface, as the reference yield surface, to define our 



material model. Please note that the  
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Q  is an arbitrary rotating tensor expressing the relative rotation 

of the coordinate systems of the observer with respect to the reference coordinate system. 

The resulting yield surface is then no longer a cylinder, but a sphere. 

    
2

0,    where  : ,
P P P P P P

eq y eq eq
J         P P P P   (21) 

 2
2 2 2

11

center
center ,  ,   center=   and   ,

P pl

y UT y y

r
F r a e r Q r a

b
  


           (22) 

      
0

: ,   ,  ,  .

pl pl Pt

pl pl pl pl pl pl pl pl pl

e e e e dt 
   

         
  


u u

F F F F I F
X X P

  (23) 

The actual yield stress
P

y
 , which is a 1st Piola-Kirchhoff stress measure, determines the 

radius of the yield surface and is defined by Eqn.(22)1. It is the only nonzero component of 

a stress tensor 
UT

P   (i.e.  
11

P

y UT
  P ) coming from an uniaxial tensile test of the modelled 

material, where the operator   
11

   extracts the element in the first row and the first 

column of a 2nd order tensor   , written as a 3x3 square matrix. The corresponding 

deformation gradient and the Jacobian of deformation are denoted as ,
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r a e    S . The equation defines an arc of a circle 

using three material parameters, the constant yield stress of the material ,
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stress Q  by which the material can harden and the maximum accumulated strain value 
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corresponding stress measures then can be written in tensor form as ,
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note here, that we have also changed the definition of the accumulated plastic strain rate 
pl

e

(Eqn. (23)1), in the definition of which 
pl

F denotes the deformation gradient of pure plastic 

deformations at a particle of the material, whose time derivative is assumed to be in the 

form of Eqn.(5)1. Other changes in the definitions of the accumulated plastic strain rate 
pl

e  

and the equivalent stress 
P

eq
  have been needed in order to meet the requirements of 

thermodynamic consistency in booth a one-dimensional (1D) stress state and a three-

dimensional (3D) stress state respectively. 

  



2.6 Calculation of the plastic multiplier 

The calculation of the plastic multiplier is a crucial step in finite-strain elastoplastic stress 

analyses as it determines the value of the stress rate tensor Eqn. (7)-(10), and the plastic 

part of the strain rate tensors ,
pl pl

E d during return mapping. Moreover, the return mapping 

procedure has to be thermodynamically consistent, i.e. it has to comply with Eqn. (20). The 

condition has not yet been met in any formulation in finite-strain computational plasticity. 

The thermodynamically consistent return mapping procedure then utilizes the objective 

differentiation of the yield surface 
P  and it can be expressed as follows  

     
P P 11

: 0,

P

UT

 
 


P P

P
L L   (24) 

where  
P

PL  is then replaced by the rate form of the constitutive equation of the 

material Eqn. (8), and the second term of Eqn. (24) by the form   
P 11UT

PL   

      2
2

11
center / center

pl pl pl

UT
F a a e r a e e          . Please also note, that the first 

term of Eqn. (24) can be replaced by any other term of Eqn. (20), because of the 

thermodynamic consistency of the formulation. 

2.7 The ratio of ductile and total damage increment 

The idea of the ratio of ductile and total damage increment x  was first introduced by Écsi 
and Élesztős in order to take into account the internal damping of the material properly 

during plastic deformations. The ratio allows for the proportional redistribution of the 

plastic flow between the spring and the damper of a 1D frictional device representing the 

rheological model of the material [24]. The ratio is determined in an elastic predictor phase 

during return mapping and its value is then kept constant. Since the return mapping 

procedure in our material model is carried out in the 1st Piola-Kirchhoff stress space, we 

had to modify the definition of the ratio as follows 
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where ,    ,
:

P 
  



P P
N N

P PP P
  (26) 

and 0,
2

y y
y


    (27) 

denotes the McCauly’s brackets, which return zero if 0y   and where  
P

 P F SL . 

Please also note that all terms of the right-hand-side of Eqn. (25)1 are objective stress rates, 

so that the value of x  is not affected by the change of the observer. 

2.8 The heat equation 

In order to describe the conservation of heat energy at a particle of the body, we have 

modified our former heat equation [27]. The heat equation can imitate elastic heating and 

dissipation induced heating and its material form takes the following form 



  
0 0

: ,      0.8 : : ,
thp el pl vis

p
c T R R x           S E Q S E S E   (28) 

where    2 2 2 2
1

2
.thp

X Y Z X Y Z
diag T diag T        E   (29) 

Here the symbols
0
, , , , , ,

thp

p
c T R S E Q  denote the material density, the specific heat at 

constant pressure, the absolute temperature, the rate of change of the 2nd Piola-Kirchhoff 

stress tensor, (Eqn. (7)), a specific Green thermal strain tensor originating from thermal 

expansion and expressing the thermal strain with respect to the absolute zero temperature, 

the material heat flux vector and the heat generation rate per unit volume respectively. The 

elastic heating in the equation is defined by the term :
thp

S E and the dissipation induced 

heating by the heat generation rate per unit volume, where we assumed that 80% of the 

dissipated mechanical energy changes into heat Eqn. (28)2. Here 
el

S  is the elastic part of 

the stress tensor and 
vis

S is its viscous part. 

3 Numerical experiment  

In our numerical experiment a cross-shaped specimen in biaxial tension was studied. The 

specimen geometry has been proposed by Müller [28] and it was fabricated from an 

AlMgSi05 alloy. Table 1 outlines the material properties of the AlMgSi05 alloy specimen 

used in the finite element analysis. 

Table 1.  Material properties of the AlMgSi05 alloy specimen  
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In order to assess the value of the axial component of the deformation gradient coming 

from the tensile stress of the material
11UT

F , we solved the one-dimensional (1D) rate form of 



the constitutive equation of the material (Eqn. (7)) for the unknown component of the 

derivative of the axial elastic displacement field with respect to the axial material 

coordinate /
el

x
u X  . The rate form of the constitutive equation of this specific 1D stress 

analysis, after neglecting the internal damping and the thermal strain in the material, can be 

expressed in the following finite-strain form 
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  (30) 

where 
11

S

y
S   is the axial component of the 2nd Piola-Kirchoff stress rate tensor 

coming from the tensile test of the material and E  is the Young’s modulus of the material. 

Furthermore considering that the accumulated plastic strain rate Eqn. (23)1 in this 1D stress 

state is / ,
pl pl

x
e u X     and that its integral is /

pl pl

x
e u X    (Eqn. (23)2), one can find 

11UT
F  as a function of the accumulated plastic strain 

pl

e  only in the form 
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where  S S pl

y y
e   see also Eqn. (22). 

In the numerical study 1/8 of the specimen body was modelled employing three planes 

of symmetry. The specimen was loaded at its four ends using 0.84667 /v mm s  prescribed 

velocity. Convective and radiation heat transfer was considered through all surfaces, 

applying 273.15 K  environmental temperature and radiation source temperature 

respectively. The bodies were initially at rest with 273.15 K  initial temperature. The 

analysis was run as transient-dynamic analysis applying 0.005 s  time step size.  

4 Numerical results  

Figure 1 shows a few selected results at the end of the finite element analysis, at time 6 s. 

These are the absolute temperature distribution, the 1st principal stress distribution in terms 

of the Cauchy’s stress measure, the accumulated plastic strain distribution over the current 

volume of the body and the temperature change time-history at the centre of the cross-

shaped specimen respectively. 

As can be seen in the figure, the results are very realistic and moreover the temperature 

change time-history is in agreement with similar temperature change time-histories coming 

from biaxial tension tests of a cross shaped specimen of an identical material [29]. 

Moreover, the presented theory is of great importance even from the material testing point 

of view of ductile materials, as it shows that the contemporary tensile tests are simply not 

sufficient for finite-strain material property determination without the inclusion of the 

deformation gradient characterizing the deformation of the tested material during its 

uniaxial tensile testing. The presented theory thus also serve a basis for improved material 

testing and it has widespread applications in industry using various manufacturing 

processes during which finite deformations take place in the processed material [30]. 

 

  



 

  
 

  

Fig. 1. Selected results from the analysis: a. Absolute temperature distribution [ºK], b. The 1st 

principal stress distribution in terms of the Cauchy’s stress measure [Pa], c. Accumulated plastic 

strain distribution [-], d. Temperature change time-history at the centre of the specimen 

Conclusions 

In this paper an alternative J2 material model with isotropic hardening for finite-strain 

elastoplastic analyses was presented. The model is based on a new non-linear continuum 

mechanical theory of finite deformations of elastoplastic media which allows for the 

description of the plastic flow in terms of various instances of the yield surface and 

corresponding stress measures in the body’s initial and current configurations. The resulting 

formulation is thermodynamically consistent, thus the results of the analyses, employing the 

model, no longer depend on the description and the particularities of the material model 

formulation. In this study the model behaviour was demonstrated in a numerical example 

using biaxial tension of a cross-shaped specimen and a fully coupled thermal-structural 

analysis, the results of which are in agreement with available experiments. The presented 

theory not only significantly improves upon contemporary thermoelastoplastic analyses, but 

it also serves as a basis for improved material testing. 
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