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Abstract.  It is well that a finite element method is very popular simulation method 

to predict the physical behavior of systems and structures. In the last years an increase 

of interest in a new type of numerical methods known as meshless methods was 

observed. The paper deals with application of radial basis functions on modelling of 

inelastic damage using continuum damage mechanics of layered plate composite 

structures reinforced with long unidirectional fibers. For numerical simulations of 

elastic-plastic damage of layered composite plates own computational programs were 

implemented in MATLAB programming language. We will use the Newton-Raphson 

method to solve nonlinear systems of equations. Evaluation damage during plasticity 

has been solved using return mapping algorithm. The results of elastic-plastic damage 

analysis of composite plate with unsymmetrical laminate stacking sequence are 

presented. 
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1 Introduction  

Carbon fiber-reinforced composite materials are finding increased application in many 

areas [1]. The finite element method (FEM) is one of the most widely used and most 

popular numerical methods for damage of plate structures [2, 3]. In the last years an 

increase of interest in a new type of numerical methods known as meshless methods or 

meshfree was observed [4]. Meshless approaches for problems of continuum mechanics 

have attracted much attention during the past decade especially owing to their high 

adaptivity and low costs to prepare input data for numerical analyses. One of the areas 

where meshless methods are convenient to use is the analysis of plate and shell structures 

[5]. 

This paper deals with the application of radial basis function (RBF) on modelling of 

inelastic damage using continuum damage mechanics (CDM) of layered plate composite 

structures reinforced with long unidirectional fibers. For numerical simulations of elasto-

plastic damage of layered composite plates own computational algorithms were 

                                                 
*
 Corresponding author: milan.zmindak@fstroj.uniza.sk 

Reviewers: Radim Halama, Jerzy Winczek 

mailto:author@email.org


implemented into the MATLAB programming language. For solving a system of nonlinear 

system equations the Newton-Raphson method was used. The evaluation of damage during 

plasticity has been solved using return mapping algorithm described in [6]. The results of 

elasto-plastic damage of a composite plate with unsymmetrical laminate stacking sequence 

are also presented. 

2 Point interpolation methods  

One of the common characteristics of all mesh-free methods is their ability to construct 

functional approximation or interpolation entirely from information at a set of scattered 

nodes or particles, among which there is no pre-specified connectivity or relationships.  The 

point interpolation method (PIM) was proposed by Liu [7] to replace moving least square 

(MLS) approximation for creating shape functions in meshfree settings. In contrast to 

mesh-based methods, algorithms based on collocation methods are frequently called 

meshless or meshfree methods. The terminology "meshless" is not always clear, and it is 

sometimes also used for Galerkin or Petrov-Galerkin methods [8]. In both cases, a 

variational formulation of a physical problem is solved in an average sense around node 

points. However, these types of methods still require geometrical information about the 

connectivity of the nodes, i.e. the volume surrounding a node, and are therefore not true 

meshless methods. 

The goal of this section is to describe mathematical formulation of computational 

models based on (RBF) for linear analysis of layered composite structures. 

2.1 Radial point interpolation method 

The RBF was originally introduced in the 1970s to multivariate scattered data 

approximation and function interpolation. Many types of meshless RBF methods have been 

proposed in the literature [9, 10]. Radial point interpolation method (RPIM) can be included 

among the methods that represent the functions of unknown field variables by series. This 

method, in addition to the least squares (MLS) method, belongs to the most commonly used 

interpolation / approximation techniques in meshless methods. 

The function      defined on the local sub-area    is interpolated at point  [   ] as 

follows  

       ∑        
 
           , (1) 

where   denotes the number of nodes supporting interpolation at a given point. These 

points can be selected using the concept of a local support domain or concept of the domain 

of influence [8]. Vector   is is vector of unknown functions and    is radial basis function 

with distance    defined as 

    √      
        

  . (2) 

The most widely used RBF in the RPIM are the functions listed in Table 1 [7], where 

   is the average distance between nodes in the local sub/area. In these functions, there are 

several shape parameters that must be determined prior to performing the analysis. One of 

the advantages of the shape functions assembled using the RPIM is the property of the 

Kronecker delta function, which implies that no special techniques are required to introduce 

the essential boundary conditions. The RPIM which uses only RBF is not polynomial 

consistent because cannot reconstruct the polynomial fields accurately. For this reason, 



polynomial members are added to the base functions. The function will be interpolated as 

follows 

Table 1. Typical RBF with dimensionless shape parameter used in RPIM 

Full name Expression Shape parameters 

Multi-quadratic radial base 

function 
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         )
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Gaussian radial base 

function 
           [   (
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]    

Thin plate splines            
 
 η 

Logarithmic radial base 

function 
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where    is coefficient for radial base and    is coefficient for polynomial base      . 

The number of RBF n is determined by the number of nodes in the support region and the 

number of polynomial bases m can be selected based on the reproducibility requirement 

[10].   

The coefficients    and    can be determined from the condition that interpolation 

passes through all   nodes, which can be written in the matrix form as 

            , (4) 

where    is vector of function values of the field variable in n nodes. The moment 

matrix    corresponding to RBF is given as 
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where 

    √       
         

  (6) 

is the distance independent of the direction, so it must be meet that   (  )        . 

Then it is valid that matrix    and also matrix   (defined below) are symmetric. Note that 

matrix      is invertible for arbitrary scattered nodes [11]. The moment matrix    is given 

as: 
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] . (7) 

 

Polynomial terms must meet extra requirements to guarantee a unique approximation of 

function. The following restrictions are often used [4] 
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Combining Eq. (4) and Eq. (8) yields the following set of equations in the matrix form 
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By solving the above system of equations we get the following relation for interpolation 

in point   

      [               ]          , (11) 

where matrices    and     are defined as follows 
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From Eq. 11 the matrix of shape functions       is   

      [               ]  [                             ] . (14) 

Shape function for  -th node is given as 

       ∑         
  

    ∑         
  

    . (15) 

The first and the second derivative of shape function we get differentiation (15) 
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In Fig. 1 to Fig.3 is described the shape function as well as its first and second 

derivations. These functions are assembled for a central node in a square area represented 

by 9x9 nodes, The domain of influence concept was used with a circular shape for 

construction of the shape function. A multi-quadratic RBF was used to which linear 

polynomial members were added, i.e. m = 3. The average node spacing was calculated as 

the average of the distances to the four closest nodes. The following parameters were used 

to construct shape functions:   =4,0,   =4.0,  =1.03. 

2.2 Governing equations and discretization 

Reddy's theory of shear deformations is one of many higher order theories. Higher-order 

theory can better describe deformation kinematics, do not require shear correction 

coefficients, and more accurately describe the distribution of transverse shear stresses. 

These theories, however, include internal higher order power quantities that are difficult to 

interpret physically and require higher calculation costs. In principle, it is possible to extend 

the displacement field expressed by thickness dimensions to any degree. Due to algebraic 

complexity and higher computational costs, theories higher than the third order are not 

used. The reason for which the relations for displacement were extended to the cubic 



member is to achieve the quadratic distribution of the transverse shear deformations and the 

stresses across the thickness of each layer. Therefore, shear correction coefficients are not 

required in these theories. 

 

 

Fig. 1. Graph of shape function for central node (left) and its derivation according x (right),  

  =4.0,   =4.0,  =1.03 

 

  

Fig. 2. Graph of derivation of shape function for central node (left) according y (left) and second 

derivation according xx (right) 

 

  

Fig. 3. Graph of second derivation of shape function for central node (left) according yy (left) and 

second derivation according xy (right) 

In Reddy´s theory, the displacement field is expressed by the unknown   ,   ,   ,    

and     as follows 
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The strain components is obtained by the equations of linear elasticity  
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Integrating the stress over the thickness of the plate we can determine the stress 

resultants 
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where the symbols   and   can take   and  , N denotes the normal and in-plane shear 

forces, M means the bending and twisting moments, Q is the shear force, P and S are 

higher-order stress resultants, respectively. If we use interpolation, then we can discretize 

equations (26)  

               ̂    ∑       ̂    
 
    . (27) 

By placing them in the Reddy governing equations [12] we obtain for all nodes a system 

of linear equations   

    ̂    . (28) 

The shape functions (14) assembled using RBF possess the delta function property, so 

the imposition of essential boundary conditions can be applied similarly as in FEM. 



3 Implementation and verification of material model  

The material model was verified for T300/914 Carbon/Epoxy [13]. The elastic properties of 

T300/914 lamina arte given in Table 2. The strength and critical integrity values are shown 

in Table 3. The indices t and c at critical values of the damage variable denote tensile stress, 

and compression stress. The damaged in-plane shear moduli at imminent failure is    
  = 

3.410 GPa. The plastic strain and damage thresholds are    
 
 =   

  = 17.8 MPa.  

The parameters required to define the damage surface and the plasticity surface as well 

as the parameters needed to define the hardening functions were calculated according to the 

procedure described in [6]. Only two terms were taken in Prony’s series in calculation of 

the parameters. These parameters are listed in Tab. 4 -6.  

Table 2. Elastic properties for unidirectional lamina 300/914 

                         

142 GPa 10.30 GPa 6.42 GPa 3.71 GPa 0.21 

 

Table 3. Strength and critical integrity properties for a T300/914 unidirectional lamina  

                                 

1830 MPa 1096 MPa 57,0 MPa 57,0 MPa 89,1 MPa 78,0 MPa 

    
      

      
      

      
      

    

 0.1161 0.1109 0.5 0.5  

 

Table 4. Damage parameters for defining surface damage for a T300/914 unidirectional lamina  

Damage 

surface 

                           

8.05156.10-3 0.21035 0.0 0.20821 1.12300 1.0 

 

Table 5. Plasticity parameters for defining plasticity surface for a T300/914 unidirectional lamina  

Plasticity 

surface 

              

-3.28217.10-4 0 3.91825.10-7 7.69468.10-5 

                 

-2.74544.10-6 4.63713.10-5 6.69058.10-5  

 

Table. 6. The parameters for defining the hardening function for a T300/914 lamina 

Damage 

hardening 

     
    

    
    

  

1.12596.10-2 2.25337.10-3 -0.18214 0.42967 -2.35997 

Plastic-strain 

hardening 

     
 
   

 
   

 
   

 
 

0.14560 -0.37184 0.07433 -0.55523 0.91852 

 
Subsequently, the material model with these input parameters was used to determine the 

material response under a shear load in plane 1-2. This response was tested at one point 

with the prescribed    values. The results obtained using the programmed material model 



were compared with the results obtained from experimental data published in the literature 

[13]. 

4 Damage and material model for elasto-plastic damage  

For polymer matrix composites reinforced by strong and stiff fibers, damage and its 

conjugate thermodynamic force was used. The formulation of the damage and material 

model is based on linking CDM with the classical plasticity theory by using 

thermodynamic principles of irreversible processes. This model is suitable for damage 

prediction and plastic deformations in composite materials reinforced by long uniaxial 

fibers with a polymer matrix. To represent the damage, the diagonal damage tensor D was 

used.  Experimental data for T300/914 Carbon Epoxy are used to identify model.  

The development of damage together with the development of plastic deformation is 

solved incrementally and is evaluated at each collocation point. The input and output data 

for the material model are described in Fig. 4, where input variables are:  ̅ is the 

constitutive matrix in the effective configuration,    ,   ,   ,    a     are parameters for 

damage and plasticity surface,   
 ,   

 ,   
 
,   

 
 are parameters for  hardening functions,   , 

   are damage threshold and yield threshold,    are damage components,   
 
 are 

components of plastic strain, p – is yield hardening variable and   is damage hardening 

variable.  The output variables are: Di are damage variables, stress components and tangent 

constitutive matrix      at the end of the last iteration. 

 

 

Fig. 4. Description of input and output data for elasto-plastic material model 

5 Numerical results and discussion 

As a verification example, a composite plate with the dimensions 100x100mm with a 

thickness of 2.5mm and ply stack orientation [0/45/-45/90] is selected. The plate is clamped 

on the edges and subjected to pressure load q* = 1MPa. The material data for each ply are: 

   = 142 GPa,    = 10.3 GPa,         = 6.42 GPa,     = 3.71 GPa,     = 0.21. The 

implemented computational models were verified by comparing the results with results 

obtained from the FEM program ANSYS with a very fine mesh (40 000 quadratic shell91-

type shell elements).   

Unlike metal structures, when evaluating the results of the analysis of the composite 

structure  it is necessary to evaluate quantities such as stresses or deformations in the 

coordinate system of the lamina in the individual locations of structure. This is because a 

single lamina of fiber reinforced composite behaves as an orthotropic material. The degree 

of stiffness reduction can be calculated from the values of the individual variables of 



damage and integrities. From the evaluation of the values of the damage variable   the 

degree of stiffness reduction in the direction of the fibers can be deduced (Fig.5). The 

degree of stiffness reduction in the direction perpendicular to the fibers in plane 1-2 can be 

deduced from the values of the damage variable    (Fig.6). To evaluate the degree of 

stiffness reduction caused by the shear load in plane 1-2, the value of the integrity 

component      must be evaluated (Fig.7). In the case of the analysed composite plate 

with an asymmetrical layout, the most critical places from the point of view of the macro 

cracks caused by reduction of stiffness in the fiber direction are in the vicinity of the center 

of the edges are parallel to the x-axis, especially in the [45 °] layer. The most critical 

macro-crack spots due to the reduction of stiffness in the direction perpendicular to the 

fibers in the laminate plane are locations in the center of the edges parallel to the x-axis in 

the [0 °] layer. 

 
 

Fig. 5. Distribution of damage variable     at medium plane of the layer [0°] (left) and at medium 

plane layer [45°] (right) 

 

  

Fig. 6. Distribution of damage variable     at medium plane of the layer [0°] (left) and at medium 

plate  of the layer [45°] (right) 

From the viewpoint of the macro cracks caused by the reduction of stiffness due to 

shear stress in plane 1-2, there are also places in the region of the center of the edges 

parallel to the x-axis in the layer [0 °]. As we can see from the Fig.8 to Fig.10, in the 

analyzed structure only very small plastic deformations occur at the given load. Stress 

distribution is described in Fig.11 to Fig.13. 



 
 

Fig. 7. Distribution of product of integrities      at medium plane of the layer [0°] (left) and at 

medium plate  of the layer [45°] (right) 

  

Fig. 8. Distribution of plastic deformation   
  at [0°] (left) and at medium plate  of the layer [45°] 

(right) 

 
 

Fig. 9. Distribution of plastic deformation   
  at [0°] (left) and at medium plate  of the layer [45°] 

(right) 

  

Fig. 10. Distribution of plastic deformation   
   at [0°] (left) and at medium plate  of the layer 

[45°] (right) 



  

Fig. 11. Distribution of stress   at [0°] (left) and at medium plate  of the layer [45°] (right) 

  

Fig. 12. Distribution of stress   at [0°] (left) and at medium plate  of the layer [45°] (right) 

 

 
 

Fig. 13. Distribution of stress    at [0°] (left) and at medium plate  of the layer [45°] (right) 

Conclusion 

In the presented paper a developed algorithm for the analysis of elasto-plastic damage by 

using RPIM based on strong form of governing equations based on Reddy’s plate theories 

is presented. The shape functions constructed by RPIM have the Kronecker delta function 

property, thus there is no need to apply special techniques to apply essential boundary 

conditions.  From the RPIM results we can see that implemented computational model be 

able to calculate the nodal displacements with very good accuracy using a relatively small 

number of nodes. The stresses   ,    and    are also calculated with good accuracy. 

However, when the transverse shear stress is compared with FEM calculations the errors 

are larger. In the case of the analysed composite plate with non-symmetrical layer 

arrangement, the maximum damage is in the fiber direction around the middle point parallel 



to the x-axis, especially in the layer [45 °]. In the direction perpendicular to the fiber, the 

maximum damage is in the area of the middle point of the x-axis parallel to the layer [0 °]. 

The maximum damage in shear plane 1-2 is in the central area of the edges parallel to the x-

axis in the layer [0 °].  For a given load of the analysed composite plate only very small 

plastic deformations were observed. 

 
This work was supported by the Slovak Research and Development Agency under the contract No. 

APVV-0736-12 and Slovak Grant Agency VEGA 1/0983/15. 

References 

1. P. Pastorek, P. Novak, P. Kopas, M. Močilan, Finite element analysis of bond 

behaviour in steel  reinforced concrete  structure strengthened carbon fiber reinforced 

polymer (CFRP) strips.  Metalurgija, 56 (3-4), 405-408  (2017) 

2. M. Žmindák, M. Dudinský, Finite Element Implementation of Failure and Damage 

Simulation in Composite Plates. Composites and their properties, N. Hu (eds.). (Intech, 

131-152, 2012) 

3. M. Žmindák, M. Dudinský, P. Frnka, Modeling of damage evaluation in thin composite 

plate loaded by pressure loading. Applied and Computational Mechanics, 6 (2), 151-

162 (2012) 

4. G. R. Liu, Meshfree methods: Moving beyond the finite element method, Second 

edition (CRP Press, 2010) 

5. J. Sládek et al., Analysis of orthotropic thick plates by meshless local Petrov- Galerkin 

(MLPG) method. Int. J. for Num. Meth. in Engng., 67/13, 1830-1850, (2006) 

6. E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS - Second 

Edition (CRC Press, 2013) 

7. G. R. Liu, Y. T. Gu, An Introduction to meshfree methods and their programming 

(Springer, 2005) 

8. S. N. Atluri, S. P. Shen, The Meshless Local Petrov-Galerkin (MLPG) method (Tech 

Science Press, 2002) 

9. P. Pechac, M. Saga, Memetic algorithm with normalized RBF ANN for approximation 

of objective function and secondary RBF ANN for error mapping, Procedia 

Engineering, 177, 540-547 (2017) 

10. W. Chen, Z. J. Fu, C. S. Chen, Recent advances in radial basis function collocation 

methods (Springer 2014) 

11. R. Schaback, Approximation of polynomials by radial basis functions. Wavelets, 

Images and Surface Fitting, P. Laurent,at al. eds. Wellesley: A. K. Peters Ltd., 459-466 

(1994) 

12. A. Szekrényes, Application of Reddy’s third-order theory to delaminated orthotropic 

composite plates. European J. of Mech. A/Solids 43, 9-24, (2014) 

13. E. J. Barbero, Finite element analysis of composite materials. (CRC Press, 2008) 

 

https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=P22KIqXedLzOSuJ7QHy&page=1&doc=5
https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=P22KIqXedLzOSuJ7QHy&page=1&doc=5
https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=P22KIqXedLzOSuJ7QHy&page=1&doc=5
javascript:;

