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Abstract. This paper presents a kinematic and dynamic analysis and distribution of 

the stress for six-item  planar mechanism by means of the SolidWorks software. 

Graphic dependence of kinematic and dynamic magnitudes of some points is given in 

dependence on the angle of rotation of the driving item and in dependence on the 

time. Distribution of the stress in the items is presented in Pa. In relation to the 

kinematic and dynamic analysis and subsequent simulation of the planar as well as 

spatial mechanisms, it is great solution to use SolidWorks software program. The 

considerable advantage of this mentioned program is based on its simplicity from the 

aspect of modeling and moreover, it is important to point out that utilisation of the 

mentioned program leads to results which are precise and accurate in the case of the 

numerical solution of the equations in the whole magnitude referring to motion of 

mechanism while the given results are obtained in the graphic form.  
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mechanism 

1 Kinematic and dynamic analysis of planar mechanism  

The planar mechanism representative (Fig. 1) consists of six bodies and it was used as 

computational model. Using the kinematic analysis [4-6] and dynamic analysis and 

subsequent simulation [1-3], the main objective is connected with the determination and 

entering of the position domains, speed (velocity) domains as well as acceleration of the 

individual bodies in relation to the specified input values of the angular velocity for the 

driving body designated as 2. The angular velocity for the body, designated as 2, is 

specified in this way: ω21=1 °/s and α21=0.7 °/s
2
, where ω21=1 °/s is not constant and it 

is changed in dependence on time (Fig. 2). Specified input values can be seen in (Fig. 3). 
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Fig. 1. Planar mechanism – computational model 

Course of input value for angular velocity and angular acceleration is in Fig. 2 and 

Fig. 3. 
 

Angular velocity of 2, 5, 6 bodies in dependence 
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Fig. 2. Angular velocity of  2, 5, 6 bodies in dependence on time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Angular acceleration of 2, 5, 6  bodies in dependence on time 

Angular acceleration of 2, 5, 6 bodies in 

dependence on time
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The simulation [12] of operation relating to planar mechanism can be seen in the Fig. 4 

for time step referring to one second while the whole simulation takes place for ten 

seconds. 

                         
         t = 1 s                                                       t = 2 s 

                               

        t = 3 s                                                      t = 4 s 

                         

   t = 5 s                                                               t = 6 s 

                            

                          t = 7 s                                                                 t = 8 s  

                              

                          t = 9 s                                                                 t = 10 s                                               

Fig. 4. Simulation of planar mechanism operation for ten positions 



The whole course of the velocity and acceleration for C, D, E, F points of bodies can be 

seen in Fig. 5 and Fig. 6. 
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Fig. 5. Velocity in points (C, D, E, F) - dependent on the time 
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Fig. 6. Acceleration in points (C, D, E, F) - dependent on the time 

The main objective of the dynamic analysis is connected with specification of the 

loading for the individual items and determination of the courses relating to mutual 

reactions, referring to individual kinematic connections [7], [10-11]. The analysis was 

based on utilisation of the linear model. Relating to the analysis, the other important  values 

were utilised: 

- modulus of elasticity (Young’s modulus): E = 2.1 e
11

 [Pa],  

- Poisson’s ratio: µ = 0.3, 

- density of material:  = 7850 [kg.m
-3

]. 

Fig. 7 represents the course of the reaction in F point of the body, designated as 6 and Fig.8 

represents the course of the reaction in D point of the body, designated as 5. 
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Fig. 7. Course of the reaction in F point of the body, designated as 6 - dependent on the time 
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Fig. 8. Course of the reaction in D point of the body, designated as 5 - dependent on the time 

2 Distribution of the Stress in Items of Planar Mechanism  

The distribution of the stress for linked bodies [8-9], designated as 1, 2, 3, 5  can be seen in 

Figs. 9-16. 

 

Fig. 9 Distribution of the stress for body designated as 1 in Pa 
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Fig. 10 Course of the stress for body, designated as 1 - dependent on the time 

 

 

Fig. 11 Distribution of the stress for body, designated as 2 in Pa 
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Fig. 12. Course of the stress for body, designated as 2 - dependent on the time 



 

Fig. 13. Distribution of the stress for body, designated as 3 in Pa 
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Fig. 14. Distribution of the stress for body, designated as 3 in Pa 

 

Fig. 15. Course of the stress for body, designated as 5 - dependent on the time 
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Fig. 16. Course of the stress for body, designated as 4 - dependent on the time 

Conclusion  

Based on the evaluation of the results, the utilisation of the Motion Program is significantly 

useful because it is effective way to determine all kinematic parameters of any mechanism 

and moreover, the loading for any point of the body system is able to be specified. The 

tolerance for the position deviation was also tested while the predetermined deviation was 

10
-9

. It is important to point out that from the aspect of convergence, it was not necessary to 

use more than five steps for each one position. On the other side, the convergence failure 

was connected with specification and entering of inaccurate parameters. 
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