Kinematic and dynamic analysis and distribution
of stress for six-item mechanism

’ 1,* ’ 1 rwe rl 7wl
Jan Vavro Jr.””, Jan Vavro , Petra Kovacikova , Jakub Hire$

'Faculty of industrial Technologies in Puchov, Alexander Dub&ek University of Trenéin, I. Krasku
491/30, 020 01 Puchov, Slovak Republic

Abstract. This paper presents a kinematic and dynamic analysis and distribution of
the stress for six-item planar mechanism by means of the SolidWorks software.
Graphic dependence of kinematic and dynamic magnitudes of some points is given in
dependence on the angle of rotation of the driving item and in dependence on the
time. Distribution of the stress in the items is presented in [Pa]. In relation to the
kinematic and dynamic analysis and subsequent simulation of the planar as well as
spatial mechanisms, it is great solution to use SolidWorks software program. The
considerable advantage of this mentioned program is based on its simplicity from the
aspect of modeling and moreover, it is important to point out that utilisation of the
mentioned program leads to results which are precise and accurate in the case of the
numerical solution of the equations in the whole magnitude referring to motion of
mechanism while the given results are obtained in the graphic form.
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1 Kinematic and dynamic analysis of planar mechanism

The planar mechanism representative (Fig. 1) consists of six bodies and it was used as
computational model. Using the kinematic analysis [4-6] and dynamic analysis and
subsequent simulation [1-3], the main objective is connected with the determination and
entering of the position domains, speed (velocity) domains as well as acceleration of the
individual bodies in relation to the specified input values of the angular velocity for the
driving body designated as 2. The angular velocity for the body, designated as 2, is
specified in this way: m,;=1 [°/s] and 0,=0.7 [°/s*], where @,=1 [°/s] is not constant and it
is changed in dependence on time (Fig. 2). Specified input values can be seen in (Fig. 3).
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Fig. 1. Planar mechanism — computational model

Course of input value for angular velocity and angular acceleration is in Fig. 2 and
Fig. 3.

Angular velocity of 2, 5, 6 bodies in dependence

on time
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Fig. 2. Angular velocity of 2, 5, 6 bodies in dependence on time

Angular acceleration of 2, 5, 6 bodies in
dependence on time
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Fig. 3. Angular acceleration of 2, 5, 6 bodies in dependence on time



The simulation [12] of operation relating to planar mechanism can be seen in the Fig. 4
for time step referring to one second while the whole simulation takes place for ten

seconds.
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Fig. 4. Simulation of planar mechanism operation for ten positions



The whole course of the velocity and acceleration for C, D, E, F points of bodies can be
seen in Fig. 5 and Fig. 6.
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Fig. 5. Velocity in points (C, D, E, F) - dependent on the time
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Fig. 6. Acceleration in points (C, D, E, F) - dependent on the time

The main objective of the dynamic analysis is connected with specification of the
loading for the individual items and determination of the courses relating to mutual
reactions, referring to individual kinematic connections [7], [10-11]. The analysis was
based on utilisation of the linear model. Relating to the analysis, the other important values
were utilised:

- modulus of elasticity (Young’s modulus): E =2.1e'' [Pa],

- Poisson’s ratio: p = 0.3,

- density of material: p = 7850 [kg.m™].

Fig. 7 represents the course of the reaction in F point of the body, designated as 6 and Fig.8
represents the course of the reaction in D point of the body, designated as 5.
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Fig. 7. Course of the reaction in F point of the body, designated as 6 - dependent on the time
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Fig. 8. Course of the reaction in D point of the body, designated as 5 - dependent on the time

2 Distribution of the Stress in Items of Planar Mechanism

The distribution of the stress for linked bodies [8-9], designated as 1, 2, 3,5 can be seen in
Figs. 9-16.
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Fig. 9 Distribution of the stress for body designated as 1 in [Pa]
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Fig. 10 Course of the stress for body, designated as 1 - dependent on the time
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Fig. 11 Distribution of the stress for body, designated as 2 in [Pa]
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Fig. 12. Course of the stress for body, designated as 2 - dependent on the time
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Fig. 13. Distribution of the stress for body, designated as 3 in [Pa]
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Fig. 14. Distribution of the stress for body, designated as 3 in [Pa]
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Fig. 15. Course of the stress for body, designated as 5 - dependent on the time
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Fig. 16. Course of the stress for body, designated as 4 - dependent on the time

Conclusion

Based on the evaluation of the results, the utilisation of the Motion Program is significantly
useful because it is effective way to determine all kinematic parameters of any mechanism
and moreover, the loading for any point of the body system is able to be specified. The
tolerance for the position deviation was also tested while the predetermined deviation was
107. It is important to point out that from the aspect of convergence, it was not necessary to
use more than five steps for each one position. On the other side, the convergence failure
was connected with specification and entering of inaccurate parameters.
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