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Abstract. The paper presents an analysis of the use of optimization algorithms in 

parallel solutions and distributed computing systems. The primary goal is to use 

evolutionary algorithms and their implementation into parallel calculations. 

Parallelization of computational algorithms is suitable for the following cases - 

computational models with a large number of design variables or cases where the 

objective function evaluation is time consuming (FE analysis). As the software 

platform for application of distributed optimization algorithms is using MATLAB and 

BOINC software package. 
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1 Introduction 

Solving of the optimization problem is generally based on the repeated evaluation of the 

objective function. Evaluation of the objective function represents FE analysis of the issue 

in the optimization problems in continuum mechanics [1, 2]. It is necessary to implement 

several types of analyses based on FEM for complex optimization problems solving (stress 

analysis to determine the state of stress distribution, modal–frequency analysis to determine 

the natural frequencies, loss of stability analysis, etc.) [3, 4]. 

To obtain the optimal solution is required tens to hundreds of thousands of objective 

function evaluations, depending on the used optimization method and the number of design 

variables [5]. The solution of such problems is unrealistic using conventional optimization 

algorithms because this solution could take several months or years. 

For the purpose of more efficiently solve the optimization problem it is necessary to 

modify optimization algorithms. The ADINA software package will be used for evaluating 

the objective function value in the implementation of parallel optimization algorithms 

[6, 7]. It can be defined parameters and create a parametric model in the input file. This 

enables easy change of design variables in optimization process. 
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2 Computational systems for optimization problem solution 

Using the parallel solution of linear equations in the FEM analysis is a fundamental 

possibility of increasing the speed of the optimization problem solution [1]. The two 

fundamental architectures of computational systems can be used in this case: 

 Symmetric Multi Processing (SMP) technology – it means multiprocessor and multicore 

computers, 

 Distributed Multi Processing (DMP) technology – this is a group of computers that are 

connected to a computer network and computers work together to solve problems. 

Iterative solvers are used for solving systems of linear equations in large-scale problems. 

Parallel implementation of iterative solvers is effective only for a relatively small number 

of compute cores that are used for the problem solution. Increasing of the computing power 

is sometimes possible by using graphic accelerators. In the case of more required and 

solving tasks and provided adequate computing resources power to implement they the 

following calculation procedure can be used: 

 Serial problem solving using the whole computing power – in this case the nodes 

are often only partially used. 

 Parallel solutions of multiple tasks on the smaller number of computational cores – 

individual computing nodes are used more efficiently. 

Practical tests have shown that in case of sufficient capacity of computing resources 

the parallel solution in terms of duration of solving across a series of tasks appears more 

efficient. Alternatively, increasing the speed of solving the optimization problem is the use 

of the above properties and modification of the optimization algorithms to the parallel 

implementation. 

3 The optimization algorithms 

Optimization methods can be divided into analytical and iterative. If in solving complex 

optimization problems of continuum mechanics to evaluate the objective function is using 

commercial FEM program, it is possible the iterative methods use only in the optimizing 

process. Iterative optimization algorithms can be divided into three basic groups [2]: 

 the direct methods, 

 the first order methods, 

 the second order methods. 

The group of direct methods can be divided into two subgroups – methods of random 

search and evolutionary algorithms. Their parallelization is simple – it is sufficient 

to implement a parallel evaluation of objective function, i.e. multiple FEM analyses 

solution work simultaneously. A subset of deterministic methods after their parallelization 

is transformed into the first subset or the gradient methods. Parallelization of the first order 

methods is based on the process of numerical differentiation parallelization [7, 8]. Based on 

the possibility of parallelization the iterative optimization algorithms can be divided into 

the following groups. 
 

Algorithms that cannot be parallelized - this group can include algorithms where 

parallelization is possible only in a few steps of the algorithm (Simplex algorithm, in which 

is only possible to parallelize the compilation of the initial simplex). 
 

Algorithms with the interaction - this group consists of algorithms in which needs to be 

completed one step of algorithm to algorithm can continued in the calculation (gradient 

methods). With these methods it is possible to parallelize the gradient or Hess matrix 



compilation while algorithm must wait for their establishment. Therefore, limiting factor 

for running the program is waiting for compilation the last element of the gradient or Hess 

matrix. Suitable computational resources for this type of algorithms are those where each 

computing node has the same computing power. Then, the powerful computational nodes 

do not have to wait for less powerful computing nodes. 
 

Algorithms without the interaction - algorithms included in this group have to solve a high 

degree of tolerance to time and return the objective function solution (evolutionary 

algorithms). The descendants group with appropriate genetic variations is generating in the 

vicinity of the parent. The value of the objective function will be subsequently evaluated for 

this group of descendants. Member with the best objective function value becomes the new 

parent. 

The following modification can be used for parallelization of evolutionary algorithms: 

Packet of descendants is created into which shall be supplemented continuously 

descendants generating on the base of current parents. These descendants are waiting 

to evaluate the objective function. The next step is parallel evaluation of descendants 

waiting in the packet and comparing the value of the objective function with a parent. 

If a descendant has a better objective function value than the current parent this child 

becomes the new parent. 

In the packet of descendants may be found simultaneously descendants from the 

different parent generations but better parent can be found in the previous generation as is 

the current parent. Parallel evaluation of the descendant’s objective function is mutually 

independent and sufficient condition the reasonable length of time for return the objective 

function. This condition allows into simultaneous evaluation include the computing 

resources with significantly different computing power (Fig. 1). 

4 Grid computing using evolutionary algorithms 

Gradient and evolutionary algorithms are significant in terms of optimization algorithms 

parallelization with the use of a commercial FEM program for evaluating the value 

of objective function. Problems of continuum mechanics cannot be considered as task with 

the one global extreme. More local extremes are often found in the solution area. 

The term grid computing represents group of different computers that work together 

to solve complex computing tasks. Complex task is to find the optimal solution of the 

problem in terms of the optimization process. Partial task is to determine the value of the 

objective function for the vector of design variables. In evolutionary algorithms 

it represents determination the value of objective function for a specific descendant. There 

are a number of software platforms for the implementation of grid computing today. 

BOINC (Berkeley Open Infrastructure for Network Computing) has been used 

to implement a distributed computing model. It’s open source system for distributed 

computing. The robustness, flexibility and universality of the system is verified 

on a number of world famous projects in the area of grid computing (SETI, Milkyway, 

Einstein, etc.) [9]. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Scheme of the optimization process for the grid infrastructure 



Computing system consists of server and client part. The server part is designed to 

ensure the following functions: 

 generate work units (work unit generator), 

 insertion of work units into a set of tasks to send (feeder), 

 identification of client’s request and schedule its compliance (scheduler), 

 client requirements completion – download work units and upload results (CGI scripts 

in Apache), 

 comparison of the results for individual work units (validator), 

 processing results after their validation (assimilator), 

 provision of communication and reporting information about the process of the work 

units solution (transitioner), 

 release disk space by deleting of solved work units (file deleter). 

The client part is designed to ensure the following functions: 

 download the main program for work unit solving, 

 monitoring updates and ensure downloading a newer version, 

 enable logging to the project or multiple projects, 

 allocation of free system resources for their use, 

 sending requests for the allocation of work units and their download on the client 

computer, 

 send the information about status and results of solution. 

A computer running Debian Linux 6.0 has been used to implement a distributed computing 

system. BOINC was installed directly into the system without using virtualization. The 

following changes were necessary perform to adjust the BOINC system for needs of 

optimization model implementation: 

 change the general system settings, 

 adjust the work units generator, 

 create a client application, 

 adjust the processing of the results, modifying the assimilator. 

General settings change consists of changing the approach of the feeder to the prepared 

work units. The strategy of work units’ choices was changed for insertion in the system 

FIFO (First In First Out). Work units, i.e. individual descendants are inserting from the 

oldest to newest for solving in the evolutionary strategy. 

At the editing of work units generator it is based on the assumption that its task is 

generate new descendants with a random genetic mutation in the best parent’s 

neighborhood. The generator monitors the number of prepared work units waiting to be 

processed. The best parent parameters are loaded and runs generate a new group of 

descendants if the number of prepared work units decreases under the specific bound. 

It is monitoring before generating of descendants if in terms of the solution convergence 

the generating is needed. The creation of work unit consists of generating random genetic 

mutations, preparation of input files for the ADINA preprocessor, preparing files for the 

ADINA postprocesing and compression of all files to the “7zip” archive. 

The advantage is that at any modification in the optimization task there is always 

necessary to transfer only one file. The optimization problem change is therefore realized 

by the change of the input files for work unit’s generator on the server side. Therefore is not 

necessary to change the work unit’s generator. The role of the client application is to ensure 

the following functions: 

 extract the files from the work unit archive, 

 run ADINA preprocessing and then solving tasks in ADINA, 

 write selected results into files by running ADINA postprocesing, 



 archiving initial and executive programs by “7zip” into a single file for transmission 

to the server. 

The assimilator modification is in preparing them to execution the following steps: 

 The result of the analysis solved by FEM in the program ADINA can contain multiple 

numeric data recorded in different files. The assimilator compiles objective function 

value from the partial results and then determines if the evaluated descendant becomes 

new parent. 

 If it becomes the new parent then into the relevant files are written new parent 

parameters and its objective function value. 

 In the evaluation of the each work unit convergence criterion is checked and in the case 

of its compliance gives the instruction to the termination of generating work units. 

 The condition was used in the choice criteria of convergence if enough new descendants 

were generated without finding a new better parent. 

It is necessary to make appropriate adjustments in the assimilator when is changing the 

form of the target function. 

5 Optimization process and FE analyses 

The optimization algorithm programmed in MATLAB using the BOINC system and 

evolutionary optimization algorithms was developed to test the proposed methodology 

[9-11]. The algorithm was tested on the problem of optimizing the wall thicknesses of the 

shell structure. The tests were performed on a simple structure consisting of a beam with an 

"I" cross section. The beam was loaded with continuous (distributed) load and supported at 

the ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Geometric model with boundary conditions 



The geometric model of the beam was divided into 30 parts and each part consisted of 

three independent thicknesses of the beam wall. Thus, the total number of optimization 

variables was ninety. 

An elastic material model for steel was used in the calculation. The starting thicknesses 

of the shell structure were 0.01 m. Created geometric model with boundary conditions is 

shown in Fig. 2. Tetragonal mesh of shell elements with the element size of 0.002 m was 

used in the finite element model. The total number of elements was 76 500 and the total 

number of nodes was 77 353. The target function has been choosing so that the maximum 

value of equivalent stresses of 100 MPa in each part of the structure was reached at 

optimum. A secondary condition was that the minimum thickness of the shell structure was 

not less than 0.001 m. 

The distribution of von Mises equivalent stresses before the optimization process is 

shown in Fig. 3. The maximum value of the stress was 313 MPa and the minimum stress 

was 0.2 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Distribution of von Mises equivalent stresses before the optimization process 

The resulting distribution of von Mises stress after the optimization process is shown in 

Fig. 4. The maximum stress reached a value of 100 MPa and minimum stress was 

0.02 MPa in this case. The resulting wall thickness of the individual parts of the beam after 

optimization is shown in Fig. 5. The maximum wall thickness reached 0.2988 m and the 

minimum wall thickness was 0.001 m. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Resulting distribution of von Mises stresses after the optimization process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Resulting wall thickness of the individual parts of the beam after optimization 



Low stress values after optimization were obtained in the end segments of the beam but 

in places of boundary conditions the maximum stress value was reached [12]. The 

optimization process was conducted on a group of 26 computers. The calculation lasted 108 

hours and the 69 542 iterations of the optimization task was performed. 

Conclusions 

Use of the BOINC in combination with MATLAB as a control system for grid computing 

allows very fast response of the system at the appropriate setting of its parameters (i.e. the 

short time between the end of the FEM analysis and processing of the results in the 

assimilator for the work units generator). This allows the implementation of appropriate and 

adapted evolutionary algorithms that require a higher level of feedback between the 

generated descendants and actual parents. 

A small claims rate on system resources, parallel realization of the work units 

generation and parallel processing of the results enables involving the order of several 

thousand to tens of thousands of PCs in FEM analyses necessary for solving the 

optimization problem. Robust computing infrastructure allows the realization of 

optimization problems for finding the global extreme in continuum mechanics problems 

with hundreds of design variables in relatively short time. 
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