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Abstract. The article is devoted to the analysis of the dynamic characteristics of the 

mechanical system composed of rigid bodies mutually connected with flexible 

bindings that represent springs and dampers. The analysed system represents the rail 

vehicle, which is distinguished by the contact link between the wheel and rail, or 

wheelsets and the track. Currently, analyses of similar type are carried out basically 

by using commercially distributed software packages, where you enter inputs 

(which the input forms allow) and the user may achieve results respecting the 

handling procedures. In accordance with the different approaches to solutions of 

partial solutions of the issue, the results of the simulations can differ. In the article the 

theoretical analysis is conducted the parameters of calculation are set out and the 

results are compared with the results obtained from the calculation by SIMPACK. 
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1 Introduction 

The article is devoted to the analysis of dynamic properties of multibody mechanical model 

representing a rail vehicle. The motivation for the creation of the article is the fact that there 

exists a steadily rising demand for detecting motion characteristics of transport machinery 

with the simulation calculation on computers [1]. Compared with the standard procedures, 

the transport machines used to be designed, a prototype was produced, the prototype was 

tested and adjusted on the basis of the results of this method, has distinct advantages in 

lower implementation costs [2, 3]. The price of the computer and the software comes out 

for sure to be cheaper than to make a new bogie, a wagon or locomotive. And it is even 

faster. Such considerations do not often take into account the quality of the people that such 

a simulation carried out. 

The quality of working staff doing the computational analyses lies in education, skills 

with creation of relevant computation models in a particular program environment. In 

addition to skills when working with the running program, it is necessary to know the issue 

of equipment, which are the subject of simulation analyses, their standard or specific 

technical parameters, terms and conditions of the external action of the environment on 
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such a system and the expected response-the behavior of the device in use. The experience, 

which can help the staff to assess the credibility of gained results, are invaluable for 

verification and validation of the models [4, 5]. 

2 Technical support integrated in software packages 

The currently, conducted simulation analysis primarily using commercially distributed 

software packages, where you enter inputs (which the input forms allow) and the user may 

achieve results respecting the handling procedures. Packages are comprehensive solutions 

providing the user a sophisticated analysis tool, which with its broad range often exceeds 

the user individual options and skills. Packages integrate a large amount of knowledge in a 

given area that are algorithmized into the procedures that a user uses through the 

programming environment. The environment is often a user-friendly and for the standard 

tasks programme with a high degree of autonomy will generate results. It is also possible to 

view the graphical tools that are also part of the environment. In view of the different 

approaches to achieve partial solutions, the results of the simulations can be different. In the 

article the theoretical analysis is conducted, parameters of calculation are set out and the 

results are compared with the results obtained from the calculation program SIMPACK. 

The similarity of the results predicts the correctness of the calculation performed by own 

programme code and opens the possibility of further development of the programme 

implementation modules for more specific calculations. 

3 Mathematic model 

The procedure of mathematic model creation is processed in the following text: rail vehicle 

equations of motion, that describe its movement in the straight track and in track arcs. The 

procedure was algorithmized and written into the programme language code. This 

programme code represents a complete software solution. By means of this programme it is 

possible to gain the results of the simulated ride of the rail vehicle with specified 

parameters of the mechanical system of the vehicle and track. Contact ellipses and the 

normal stress course are calculated by means of the Hertz method [6, 7, 8, 9]. 

For middle wheelset radius, middle contact angle value, track curvature and angle 

velocity of the wheelset revolution is valid: 
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where: 

r0...the average radius of the wheel [m], 

rl...an immediate radius of the left wheel [m], 

rr...an immediate radius of the right wheel [m], 

δ0...middle angle of tangent planes [rad], 

δl...angle of the left wheel tangent plane [rad], 

δr...angle of the right wheel tangent plane [rad], 

a...half distance of the contact circles [m], 

C...bending curvature of the track [m
-1

] (In the case of right arc is valid the sign „+“, in the 
case of left arc is valid the sign: „ - “),  
R...radius of a track [m], 



γ0... angle of attack, when the bogie in the track is in a chordal position  [rad] (For the first 

(front) wheelset is valid the sign: „ - “, for pre second (rear) wheelset is valid the sign: „ + 
“), 
Ω... angular speed of the wheelsets [rad.s

-1
], 

v0... half distance of the contact circles [m]. 
 

 

Fig. 1. Representation of the rolling stock chassis passing arc track 

In the Fig. 1 there is a rail vehicle schematically depicted. It moves from the left to the 

right side direction in the track arc with given velocity. A vehicle approached to the track 

stretch of rails in arc under the angle of attack. 

For the relative slip vector is valid: 
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where: 

si,1... slip in the contact points of the left or the right wheel in the direction 1 (=x), 2 (= in 

the transverse direction of the tangential plane) and 3 (in the direction perpendicular to the 

tangential plane, [-], [-], [m
-1

], 

 ... the angular speed of the approaching wheel of the first wheelset during the rotation 

about the z-axis [rad.s
-1

], 

γ... wheelset turning [rad], 

 ... the angular speed of the wheel sets in rotation around the x-axis [rad.s
-1

]. 

For combined modulus of elasticity is valid: 
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where: 

G... combined modulus of elasticity in shear [Pa], 

GW... modulus of elasticity in wheel shear [Pa], 

GR... modulus of elasticity in rail shear [Pa]. 

For contact forces in contact points is valid: 
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where: 

f11, f22... have the dimension of force [N], 

f33... [N.m
2
], 

f33... in accordance to the Kalker’s computational method [N.m], 

ae, be... are major and semi-minor axis of the ellipse in the wheel/rail contact patch [m], 

C11, C22, C33, C23... Kalker’s coefficients [-], [10]. 

For tangential forces and moments in the contact points is valid: 
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where: 

Fti,1 ... tangential force at the contact point left or right wheels, in the (lengthwise) direction 

of the 1 axis of the contact plane [N], 

Fti,2 ... tangential force at the contact point left or right wheels, in the (transverse) direction 

of the 2 axis of the contact plane [N], 

li ... spin moment of the left or right wheel around an axis 3 perpendicular to the contact 

plane of the rail and wheel [N.m]. 

For normal forces is valid: 
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where: 

fnl ... the normal force at the contact point of the left wheel [N], 

I2 ... the moment of inertia of the wheel when turning around an axis of rotation [kg.m
2
], 

Ql ... the wheel force on the left wheel [N], 

Qr ... the wheel force on the right wheel [N]. 
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where: 

fnr ... the normal force in the contact point of the right wheel [N].  

Depiction of forces acting on a wheelset is in Fig. 2. 

 

 

Fig. 2. Depiction of forces acting on a wheelset 



 

For the left wheel force is valid: 
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Where: 

Ql ... the wheel force on the left wheel [N], 

yr ... the coordinate of the contact point of the right wheel and rail [m], 

y ... transverse displacement of the wheel [m], 

Fz pl ... the force in place of axle box (primary suspension) of the left wheel [N], 

Fz pr ... the force in place of axle box (primary suspension) of the right wheel [N], 

ap ... half distance of the bearings boxes (primary suspension on one wheelset) [m], 

For right wheel force is valid: 
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where: 

Qr ... the wheel force on the right wheel [N], 

yl ... the coordinate of the contact point of the left wheel and rail [m]. 

Contact forces and moments were computed by means of FASTSIM method. 

4 Wheelset equations of motion 

We will express equations of motion in the matrix shape (10) 
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 (10) 

In addition to the forces acting on the wheelset, the force acts on each vehicle when 

operating during the transition as a result of the effects of gravity and centripetal 

acceleration. (11): 
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where: 

U ... cant of the outer rail in the track arc [m], 

2.a ... distance of contact circles [m]. 

The accelerations distribution is depicted in Fig. 3 

 



 

Fig. 3. Accelerations distribution 

5 Vehicle equations of motion 

The vehicle model consisting of two two-axis bogies (four wheelsets à four degrees of 
freedom, two bogie frames à six degrees of freedom) and one body of wagon (six degrees 
of freedom) has 34 degrees of freedom. In the following we presuppose, that the model 

consists of rigid bodies connected with flexible bindings. The rigid bodies are defined by 

mass matrix and the flexible bindings by stiffness matrix and damping matrix. 

We can express the vehicle equation of motion in a matrix shape: 
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 (12) 

where: 

[M] ... mass matrix [-], 

[B] ... damping matrix [-], 

[K] ... stiffness matrix [-], 

 X
 ...vector of accelerations [-], 

 X
 ... vector of velocities [-], 

 X
 ... vector of displacements [-], 

{f} ... vector of external loads [-]. 

A vector of the external load forms the right side of a matrix equation as well as operating 

force. For the calculation, it is possible to use different types of methods. In the following 

there are depicted all stabil methods, that were tested for equation of motion solution. 

  



5.1 Central-difference method 

Initialize  0X ,  0X and 0X . Select time step Δt and calculate integration constants: 
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Form stiffness [K], mass [M], damping [C] matrixes and {f} load vector: 

Form effective stiffness matrix: 
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Calculate effective force vector at a time t + Δt: 

 
             2 0 1t t t t t tF f K a M X a M a C X                  (16) 

Solve for displacements at time t + Δt: 
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Calculate  X  and  X  at time t: 
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5.2 Fourth Order Runge-Kutta Method 

One of the methods that can be used for such simulations with the advantage of the method 

is Runge-Kutta. To get results, we have used the Runge-Kutta method – in this case 4-th 

order. 

Initialize  0X ,  0X and 0X . 

Transformed into first order matrix differential equation as follows: 
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then the equation becomes: 
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Assuming the duration of each time step is h , ti=ih , i=1,2,…then the computational 
formulas over the time interval [ti,ti+1] are as follow: 

 

       
        

        

         

1

2 1 1

3 2 2

4 3 3

, ,

, ,
2 2

, ,
2 2

, ,

i i

i i

i i

i i

K f t y t N

t t
K f t y t K N

t t
K f t y t K N

K f t t y t t K N



      
 

      
 

     
 (23) 

where we assume: 
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            
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N N y t t c y t t c y t t c

             
  

             
  

         
 (25) 

Computational formula is: 

 
              1 1 2 3 4

1
2 2

6
i iy t y t t K K K K         

 (26) 

5.3 Newmark Beta method 

Initialize  0X ,  0X and 0X . Select time step Δt, parameter α and ȕ, and calculate 

integration constants: 

 

2
1 1 1

;
2 4 2

       
   (27) 



0 1 2 3 4 52

1 1 1
; ; ; 1; 1; 1

2 2
a a a a a a t

t tt

  
    

 
                  

1a
t





 ;

2

1
a

t


 ;
3

1
1

2
a


 

 ;
4 1a




 
;

5 1
2

a t



 
      (28) 

Form stiffness [K], mass [M], damping [C] matrixes and {f} load vector: 

Form effective stiffness matrix: 

 
       0 1A a M a C K    

 (29) 

Calculate effective force vector at a time t + Δt: 

 

            
        

0 2 3

1 4 5

t t t t t t t

t t t

F f M a X a X a X

C a X a X a X

         

      
 (30) 

Solve for displacements at time t + Δt: 

 
     t t t tA X F  

 (31) 

Calculate  X  and  X  at time t + Δt: 

 
          0 2 3t t t t t t tX a X X a X a X       

 (32) 

 
          1 4 5t t t t t t tX a X X a X a X       

 (33) 

5.4 HHT method (Hilber – Hughes - Taylor) 

Initialize  0X ,  0X and 0X . 

Select time step Δt, parameter α, ȕ, αf, αm and Ȗ, and calculate integration constants: 

 
 21 1 1
1 ; ; ; 0; 0

4 2 3
f m               

 (34) 

where: 

Ȗ ... coeffitient of amplitude damping. 
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Form stiffness [K], mass [M], damping [C] matrixes and {f} load vector: 

Form effective stiffness matrix: 

 
        0 1 1 fA a M a C K     

 (36) 

Calculate effective force vector at a time t + Δt: 
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      
 (37) 

Solve for displacements at time t + Δt: 

 
     t t t tA X F  

 (38) 

Calculate  X  and  X  at time t + Δt: 

 
          0 2 3t t t t t t tX a X X a X a X       

 (39) 

 
          1 4 5t t t t t t tX a X X a X a X       

 (40) 

5.5 Park Stiffly stable method 

Initialize  0X ,  0X and 0X . 

Select time step Δt and calculate integration constants: 
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Form stiffness [K], mass [M], damping [C] matrixes and {f} load vector: 

Form effective stiffness matrix: 

 
       2

0 0A a M a C K    
 (42) 

Calculate effective force vector at a time t + Δt: 
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      
 (43) 

Solve for displacements at time t + Δt: 

 
     t t t tA X F  

 (44) 



 

 

Calculate  X  and  X  at time t + Δt: 

 
         0 1 2 3 2t t t t t t t t tX a X a X a X a X           

 (45) 

 
         0 1 2 3 2t t t t t t t t tX a X a X a X a X           

 (46) 

6 Computational model of a vehicle 

The processing computational model is characterized by parameters of the vehicle, its 

geometric and mass parameters, parameters of flexible linkages, dampers. Others are 

parameters of the contact links and wheel track and the track parameters. All necessary 

parameters are set out deliberately to make them clearly referred to the input data, which 

were used to obtain the results using our own programme and a commercial package. 

6.1 Vehicle parameters 

  

Fig. 4. Schematic drawing of the vehicle 

In accordance with the specification, our model is a simple vehicle compounded from 

two two-wheelsets bogies and one wagon body (Fig. 4). All flexible bindings are linear, 

bodies are taken as rigid bodies. The data of the vehicle are introduced in the following 

tables from Tab. 1 to Tab. 4. 

Table 1. Mass vehicle parameters 

Masses 

 m [kg] I1 [kg.m2] I2 [kg.m2] I3 [kg.m2] 

Wheelset 1 375 800 100 800 

Bogie 1 750 1 250 1 330 2 760 

Body of wagon 81 000 100 000 2 000 000 2 000 000 

 

  



Table 2. Flexible bindings parameters 

Suspension kx [kN.m-1] ky [kN.m-1] kz [kN.m-1] 

Primary suspension 50 0000 1 000 2 500 

Secondary suspension 0 0 1 140 

Ball pin 10 000 50 000 100 000 
 

Table 3. Dampers parameter 

Damping bx [kN.s.m-1] by [kN.s.m-1] bz [kN.s.m-1] 

Primary damping 50 150 200 

Secondary damping 0 0 50 

Ball pin 50 50 100 
 

Table 4. Geometrical parameters of the vehicle and track 

Parameter Description Value Unit 

Distance of the points of work of 

suspension and damping of the primary 

suspension 
pa  2 [m] 

Distance of the points of work of 

suspension and damping of the secondary 

suspension 

 1.7 [m] 

The distance of the pivots of bogies  9 [m] 

Wheel base of bogies  1.8 [m] 

Nominal diameter of the wheels  0.92 [m] 

Height of centre of gravity of the wheelset 

over rail top 
 0.46 [m] 

Height of the bogie center of gravity over 

rail top 
 0.68 [m] 

Height of the body of wagon center of 

gravity over rail top 
 2.08 [m] 

Height of the primary suspension over rail 

top 
 0.46 [m] 

Height of the secondary suspension over 

rail top 
 0.88 [m] 

Height of the pin ball over rail top  0.76 [m] 

Wheel profile S1002   

Rail head profile – measured in the track S91700_16_sym.TWR   

Track gauge  1435 [mm] 

Equivalent conicity at 3 mm  0.145 - 

Coefficient of friction  0.4 - 

Radius of the track arc R 293 [m] 

Track cant in the ark U 144 [mm] 

Kalker‘s coefficients reduced by the factor  0.67  

6.2 Geometric characteristics of a wheelset and a track 

Geometric characteristics of wheelset and track can help to predict the movement of a 

wheelset in a track. At the same time, they depict the characteristics of reciprocal attitude of 

wheel tread profile and rail head profile. These characteristics represent an important input 



parameter for a mechanical system excitation due to the wheels of wheelset rolling in rails 

of track. Both functions input into the computation directly. 

 
 

Fig. 5. View at the dependence of the Delta R 

function on the lateral shift of the wheel profile 

after rail profile. 

Fig. 6. View at the dependence of the Tangent 

Gamma function on the lateral shift of the wheel 

profile after rail profile. 

From all geometric characteristics we are introducing Delta R and Tangent Gamma 

functions only. From Fig. 5 and Fig. 6 it is visible, that the most important curve changes 

are when the transversal movement of a wheel tread profile along a rail head profile reaches 

cca 5 mm. 

Free track gauge channel is exhausted in this point and a wheel is via its flange climbing 

the rail head side. In the Tangent Gamma function curve this region is characterized by 

a steep change of course. 

6.3 Track parameters 

The model track consists of connected geometrically different track parts: straight line track 

sections, transition curves, superelevation ramps and from the track in arcs. It arises from 

Fig. 7, that length of the track is 3 km. Geometry of the track in horizontal plane is depicted 

by a bold black line. It has the vertical axis description on the right side. 
 

 

Fig. 7. Track definition 

The track consists of four arcs with the radius of R 293 meters, three of them are left 

and three of them are right. The axis is on the left side. In the bottom part of graph there are 

depicted the superelevations of the outside rail 0.144 m. The vertical axis for this graph is 

on the right side. This track has neither climbing nor descending. For the computation 

transition curves and superelevation ramps of the Bloss were used. 
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7 Computation results 

Here are compared two different physical variables for the first or third wheelset. In the 

following graphs we can see the course of wheelset lateral shift (displacement) in (y), slips 

(S) in the separate directions, guiding forces (Y), sum of guiding forces (SY), wheel forces 

(Q). At the same time there are evaluated and graphically depicted the forces in the contact 

plane of wheel and rail: normal forces (N), tangential forces (T) in special directions. 

In Fig. 8 there is a view at a vehicle model in SIMPACK programme. The look of the 

model is demonstrative only. We utilized the basic depicting tools, that are a part of the 

programme environment. 

 

Fig. 8. View at a vehicle model in SIMPACK programme 

The results obtained from the computations executed by means of our own software, 

where are algorhitmized are the equations of motions and auxiliary relations, presented in 

this paper. They are compared with results obtained by means of computations performed 

with SIMPACK programme package. 

The results gained by means our own programme are depicted with red colour. The 

results from SIMPACK are of black colour. 

7.1 Shift and rotating of the wheelset 

We may take as the same the wheelset shift in the y-direction obtained by both of 

procedures (Fig. 9). 
 

 

Fig. 9. Shift of the wheelset in the y-axis direction 

We may take very similar a revolution of the wheelset around z-axis by both of 

procedures. Small differences appear at transitions from one arc to another arc (Fig. 10). 

 

Fig. 10. Revolution of the wheelset around z-axis 
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7.2 Slips 

In Fig. 11 to Fig. 16 there are depicted courses of slips in the x-direction on the right wheel 

of the first wheelset. 

 

Fig. 11. Slip in the x-direction on the right wheel of the first wheelset 

Slip parameters are important for tangential forces calculation. This is the reason, that 

the „overshootings“ during the transition of curves courses that are visible at slips in the x-

directions of right (Fig. 11) and left wheels (Fig. 12), appear in the tangential forces 

calculation (Fig. 17 and Fig. 20) too. 

 

Fig. 12. Slip in the x-direction on the left wheel of the first wheelset 

 

Fig. 13. Slip in the y-direction on the right wheel of the first wheelset 

Slips in the transversal direction obtained by means of calculations with SIMPACK 

have more smooth course without the overshootings in the opposite side of slips in the 

longitudinal x-axis direction. 

 

Fig. 14. Slip in the y-direction on the left wheel of the first wheelset 

7.3 Normal forces 

Normal forces in their results represent the force acting in the normal axis direction to the 

contact plane in the rail/wheel contact point. The course of their values is very similar again 

(Fig. 15 and Fig. 16). 

 

Fig. 15. Normal force on the right wheel of the first wheelset 
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Fig. 16. Normal force on the left wheel of the first wheelset 

7.4 Tangential forces 

When we evaluated the tangential forces, the differences appear in the places, where 

vehicles come from one track geometry into the other track geometry (straight, a ramp, an 

arc). The course of the tangential forces in the longitudinal x-direction gained by means of 

SIMPACK programme is of more steep inclination of the transitions (Fig. 17 – Fig. 20). 

This course comes back to the stable state when a vehicle runs in a straight line track or in 

an arc via „overshooting“. In this cases, there are short-timed detected higher values of 

forces. The „overshoootings“ forces courses follow from the „overshooting“ courses of 
slips. 

 

 

Fig. 17. Tangential force in the x-direction on the right wheel of the first wheelset 

 

Fig. 18. Tangential force in the x-direction on the left wheel of the first wheelset 

 

Fig. 19. Tangential force in the y-direction on the right wheel of the first wheelset 

 

Fig. 20. Tangential force in the y-direction on the left wheel of the first wheelset 

Tangential forces in the y-axis direction obtained by both of procedures are similar in 

the shape of their course. It relates to the slips course, they are evaluated and depicted in the 

Fig. 13 and Fig. 14. 
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7.5 Guiding forces 

The guiding forces course is an important parameter for results comparison (Fig. 21 – 

Fig. 23). This parameter gives not only evidence of lateral force influence of the wheel to 

the rail, but in this case it gives the view at the result of processing of the contact 

parameters of the wheelset and track, contact patches and stresses and assumptions of the 

force acting between a vehicle and a track. 
 

 

Fig. 21. Guiding force on right wheel of the first wheelset 

 

Fig. 22. Guiding force on left wheel of the first wheelset 

 

Fig. 23. Sum of the guiding forces on the first wheelset 

The close course of the individual forces verified results obtained with the mathematical 

expression investigated the movement state of a vehicle on the basis of the results obtained 

from the programme, which is now widely used by reputable professionals. Or when 

viewed from the opposite side: the results produced by an automated computing system 

with a closed core and prescribed (and also some optional) calculation procedures, we 

would be able to get the solution to the system of equations derived in this article. 

7.6 Wheel forces 

The computations results of the wheel forces at the left and the right wheels are very similar 

to each other, see Fig. 24 and Fig. 25. 
 

 

Fig. 24. Wheel force on right wheel of the first wheelset 

 

Fig. 25. Wheel force on left wheel of the first wheelset 
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8 Methods comparison 

We tested the methods in the way, that all model bodies were moved (deflected from 

centered position) 0.003 m in transversal y-direction (Tab. 5). The graphical depiction of 

wagon body position deflection in y-axis direction is shown in Figs. 26, 27, 28, 29, 30. The 

difference is in computation with various damping parameters (γ). The Integration methods 

stability comparison is in Table 5. 

Table 5. Integration methods stability comparison 

Integrating method Parameters Stability 

Central diferention  Stabil 

Newmark 
1 1 1

,
2 4 6

alebo      Stabil 

HHT 0.15   Stabil 

Wilson Θ Θ = 1.5 Unstabil 

Houbolt  Unstabil 

Park stiffly stable  Stabil 

Runge-Kutta 4-grade Stabil 

Two cycles with an trapezoid rule  Unstabil 

 

HHT ( 0  ), HHT ( 0.15  ), HHT ( 0.2  ), HHT ( 0.3  ) 

Fig. 26. Wagon body position deflection in y-axis direction 
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Central difference, Newmark, HHT (γ = 0), Park stiffly stabil, Runge-Kutta 

 

Fig. 27. Wagon body position deflection in y-axis direction calculated by HHT method when γ = 0 

The parameters for computations in accordance to equations (47) and (48) when γ = 0 are 

in the Table 6. 
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Table 6. Wagon body position deflection in y-axis direction and calculated damping parameters 

when γ = 0 

1x  
2x  

3x  
4x  

5x   

0.003 -0.0024 0.0019 -0.0015 0.0011  

13  
35  

15  
24    D  

0.45 0.58 0.51 0.48 0.51 0.08 

 

HHT ( 0.15  ) 

 

Fig. 28. Wagon body position deflection in y-axis direction calculated by HHT method when γ = 0.15 

The parameters for computations in accordance to equations (47) and (48) when γ = 
0.15 are in the Table 7. 

Table 7. Wagon body position deflection in y-axis direction and calculated damping parameters 

when Ȗ = 0.15 

1x  
2x  

3x  
4x  

5x   

0.003 -0.0023 0.002 -0.0016 0.0012  

13  
35  

15  
24    D  

0.4 0.47 0.44 0.38 0.43 0.07 

 

HHT ( 0.2  ) 

 

Fig. 29. Wagon body position deflection in y-axis direction calculated by HHT method when γ = 0.2 

The parameters for computations in accordance to equations (47) and (48) when γ = 0.2 

are in the Table 8. 

Table 8. Wagon body position deflection in y-axis direction and calculated damping parameters 

when Ȗ = 0.2 

1x  
2x  

3x  
4x  

5x   

0.003 -0.0023 0.002 -0.0016 0.0013  

13  
35  

15  
24    D  

0.39 0.45 0.42 0.36 0.4 0.06 
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HHT ( 0.3  ) 

 

Fig. 30. Wagon body position deflection in y-axis direction calculated by HHT method when γ = 0.3 

The parameters for computations in accordance to equations (47) and (48) when γ = 0.3 

are in the Table 9. 

Table 9. Wagon body position deflection in y-axis direction and calculated damping parameters 

when γ = 0.3 

1x  
2x  

3x  
4x  

5x   

0.003 -0.0023 0.002 -0.0017 0.0014  

13  
35  

15  
24    D  

0.38 0.4 0.39 0.32 0.37 0.06 

Conclusion 

At present, the analyses of the dynamic characteristics of railway vehicles are carried out 

basically by using commercially distributed software packages, where you enter inputs 

(which the input forms allow) and the user may achieve results respecting the handling 

procedures. In view of the different approaches to solutions of partial solutions, the results 

of the simulations can differ. 

In the paper the theoretical analysis of issue solution is performed, the computation 

parameters are specified and the results of computations performed with own programme 

are compared with the results gained from programme SIMPACK. The evaluated results 

are for the first or the third wheelset. In the figures with graphical representation of the 

courses: wheelset shift in the lateral direction (y), wheel-set rotation, slips (S), forces in the 

contact plane of rail and wheel: normal (N), tangential (T), guiding forces (Y), sum of 

guiding forces (SY), wheel forces (Q) there can be seen a very good coincidence at the 

computation with programme SIMPACK and our programme, here presented theory is 

processed in this. We analysed various time integration methods for judgement of the 

suitability, stability and numerical damping of these methods. 

Finally, we can state, that the calculations met the goal, that we had set to ourselves. 

The results obtained by means of commercial package in general confirm the rightness of 

the theoretical analysis and realized algorithm in our own programme code. At the same 

time the theories in the investigated issue confirm the trustworthiness of the results 

obtained by commercial package. In the following period it can enable to us to model the 

flexible bindings and dampers with characteristics, that program SIMPACK does not 

directly enables and to use other contact theories of the rail and wheel contact with the non-

elliptic contact patch. 
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