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Abstract. All heat engines need two different temperatures for their work, T1<T2. 

The efficiency is limited by the Carnot formula from above. This article presents a 

new conception for heat engines. Unlike conventional heat engines, the working 

medium has an additional degree of freedom, the rotation around a given axis. The 

heat introduced and removed can not only lead to a change in the parameters of 

temperature, pressure, and volume, which are considered in conventional 

thermodynamics, but also to a change in the state of rotation. The rotational speed 

must also be taken into account in all phases of the cycle for all efficiency 

calculations. In many cases, this leads to a surprisingly different result from the results 

of conventional thermodynamics, that the efficiency of the cycle can exceed the 

Carnot limit. The efficiency values depend not only on temperatures and rotational 

speeds, but also on the material data. The proposed new type of heat engine makes it 

possible to better utilise very small temperature differences and under certain 

conditions, in combination with an ideal heat pump, to extract ambient heat and 

convert it into mechanical energy. The calculated results were presented for simple 

geometry and can easily be verified experimentally. In combination with an ideal heat 

pump, the proposed heat engine facilitates the surroundings to withdraw heat and 

convert it into mechanical work. 
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1 Introduction 

In conventional thermodynamics, the maximum efficiency of heat engines can be fully 

specified by means of temperatures in the range of which the working cycle takes place. 

Carnot's theorem is the well-known formulation of this fact. 

This article presents a whole new principle for converting heat into mechanical energy. 

The systems under consideration have an additional degree of freedom - the rotation around 

their own axis. The heat supplied can also partly be converted into the acceleration of the 

rotation of the system. This degree of freedom can take the energy from the surroundings 

and also put it back into the surroundings. Not only temperatures but also rotational states 

(rotational speeds) must therefore be taken into account in the description of the efficiency. 

We refer to the new type of heat engines proposed here as RS machines (machine operating 

on the basis of the rotating system). 

With conventional heat engines, the thermal expansion or shrinkage of the working 

material (e.g. a gas) is directly converted into mechanical work. The new working principle 
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proposed here works differently. In the proposed concept, in the rotating systems the heat 

supply leads to the expansion of the working medium and thus to mass displacement in the 

direction of the rotational axis. This movement of the mass leads to a reduction of the 

inertia moment. This reduction results in the increase of the rotational frequency at a 

constant angular momentum and also an increase in the rotational energy. This 

phenomenon has long been used by ice skaters when performing pirouettes. However, the 

muscle work of the athletes causes a shift in mass. In an RS machine, the heat supplied is 

the cause of the mass shift.  

The aim of the calculations carried out was to check whether this phenomenon was 

sufficient to increase efficiency beyond the Carnot limit. The functioning of the RS 

machine as described here allows the user - due to a partially selectable starting rotational 

frequency - to determine the amount of heat that can be converted to mechanical energy, at 

fixed working temperatures T1 and T2.   

The RS machines operate cyclically, each cycle has 4 phases. In phase 1, the system is 

operated at the ambient temperature T1 and accelerated at the rotational speed ω1. In this 

phase, mechanical energy must be supplied to the system. In phase 2, the temperature of the 

working liquid is increased from T1 to T2. To simplify our calculations, we have assumed 

that the necessary heat is supplied at a constant angular momentum. The rotational speed 

increases to ω2. In phase 3, the rotational energy is removed from the system at the constant 

temperature T2 and the system is decelerated. In phase 4, the working liquid is cooled down 

to the T1 temperature. The work medium could still work in phase 4, but we have not 

included this to simplify the calculations. 

When the rotation in phase 1 is accelerated, only in the case of a compressible liquid, 

some of the energy supplied is consumed to compress the liquid. In the following 

calculations, we assume that when the rotation is decelerated in phase 3, the braking of the 

rotation leads to decompression and the decompression energy is converted into rotational 

energy. 

2 Description of the geometry of the RS machine (simplest 
version) 

The basic principle of an RS machine can be seen in figures 1-3. The main part of the 

machine is a hollow cylinder that is to rotate around its axis. The working fluid first has the 

T1 temperature and is in a cylindrical shell in the rotation with the outer radius Ra and the 

internal radius Ri1 (see Figure 1 and 2). The influence of gravitation on the geometry of the 

working fluid is not included. 

In the container are at least two partition walls, which serve to ensure the rotation of the 

working medium together with the container. The partitions are mechanically fixed to the 

container. In addition, by pressure on the separating walls, the expanding liquid can change 

the rotational state of the system. The geometry described here has deliberately not been 

selected optimally! The article only intends to show that even with this simple and non-

optimal design, higher efficiency values can be achieved than according to Carnot. The 

greatest advantage of this geometry is that the computational check can be performed very 

easily. 



 

Fig. 1. RS machine, side view, perpendicular to the axis of rotation 

 

 

Fig. 2. Geometry of an RS machine, view from above, in the direction of the rotational axis 

After heating to the temperature T2 the liquid is in the cylinder with the outer radius Ra 

and in the inner radius Ri2. Because T2 > T1 (expansion in the direction of the axis of 

rotation), Ri2 is also < Ri1. This results in the reduction of the moment of inertia. For all 

further considerations, we assume that with the temperature transition from T1 to T2 the 

container geometry remains virtually unchanged.  



3 Basic formulas for the efficiency calculations of the RS 
machine 

Terms:  

Mflu - Mass of the working medium, 

ρ (P1, T1) - density of the liquid used at initial pressure P1 and temperature T1, 

CvFlu - specific heat of the liquid, 

H - Container hight, 

MCont - mass of the container, 

ρCont - density of the container material, 

CvCont - specific heat of the container material, 

α - thermal expansion coefficient of the liquid, 

P1 - initial pressure, 100000N/m
2
, 

Working fluid – diethyl ether. 

The geometry terms are described in the figures 1-3. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Four partitions in the container of an RS machine 

4 Efficiency calculation for the incompressible medium 

At temperature T1 and at pressure P1 the following applies: 
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For incompressible media, we consider ρ as dependent on temperature only. 

The MFlu mass is located in the cylinder shell with the outer radius Ra and inner radius 

Ri1. Mass MFlu is equal to product volume (P1, T1) times the density (P1, T1). At temperature 

T2 the following applies: 
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The MFlu mass is located in the cylinder shell with the outer radius Ra and inner radius 

Ri2. From the equalisation of (1) and (2) the following applies: 
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Since Ri2 ≥ 0 must be, the temperature T2 cannot be arbitrarily large for a given 

geometry. However, this limitation can be corrected by a small change in the geometry. 

For the moment of inertia of a cylinder shell with the outer radius Ra inner radius Ri, 

density ρ, and the height H, the following applies: 
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In which ρ is the material density of the liquid in the shell.   

The formula (4) is used with various parameters for the calculations of the moments of 

inertia of the working fluid and the container. 

We refer to J1 as the complete moment of inertia of the whole system at the beginning 

of phase 2 and J2 at the end of phase 2. 

 ContFlu JJJ  11  (5) 

 ContFlu JJJ  22  (6) 

Assumption: The moment of inertia of the container JCont remains virtually unchanged in 

the temperature range used. The kinetic energy of rotation at the beginning of phase 2 is: 
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At the end of phase 2 
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Where ω = 2*π*f, f is the frequency of rotation. For the angular momentum L the 

following applies: 

At the beginning of phase 2  

 111  JL  (9) 

At the end of phase 2 

 222  JL  (10) 

Ideally, the loss of rotational moment during phase 2 is 0. In reality, there are losses in 

rotational momentum (eg due to friction).  These losses can be represented by factor Kred. 

  



Then: 
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Where Kred ≤ 1 (the loss of the angular momentum). From the equation (11), the angular 

velocity ω2 at the end of phase 2 can be calculated: 
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For the kinetic energies Ekin1 and Ekin2 the following applies: 
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When J1*K
2
red> J2, then Ek2 is also > Ek1.This means an increase of the rotational energy 

due to the heat supply. 

In the course of phase 3, the system can provide the kinetic energy Ek2 . In phase 4, the 

working liquid and the container are cooled from temperature T2 to temperature T1. In order 

to simplify the calculations, at the end of phase 3 the remaining temperature difference 

between T2 and T1 are deliberately not used for the production of the work! Nevertheless, 

the achieved efficiency values can exceed Carnot's limit. 

For the obtained mechanical energy deltaEk the following applies: 
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From equations (7-14) the following applies: 
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For incompressible working media, we assume that the moments of inertia J1 and J2 are 

only dependent on temperatures T1 and T2. 

Equation (15) shows that the gained energy deltaEk is proportional with the kinetic 

energy Ek1 . As ω1 and thereby also Ek1 can be selected freely, the efficiency can be 

influenced at least in part (see figures 5-8 and tables 2-5). This is a new and the most 

important property of RS machine, which leads to the possibility to exceed the Carnot limit 

of efficiency. 

5 Calculation of the efficiency η 

The efficiency of the above-described working cycle η is defined as the work obtained in 

the cycle divided by the total amount of the heat supplied to the system.  

The heat supplied must provide the following three tasks for incompressible working 

fluid) and four tasks for compressible liquid energy: 

A1. Increase of the rotational energy by deltaEk, (equation 15). The increase of the 

kinetical energy deltaEK is the gained work in one working cycle (later the phase 

2). 

A2. Heating the working fluid (see Eq. 16) and the container see eq. (17) from 

temperature T1 to temperature T2. 



For the required heat quantity, the following applies: 
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A3. As a result of the thermal expansion, some of the working liquid is displaced in the 

direction of the axis of rotation. 

The necessary work Atransl serves to overcome the centrifugal force. This work can 

be estimated from the following formula: 
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Where Ri1 internal limit of the zone at temperature T1, Ri2 the internal limit at 

temperature T2 and MFlüss is the mass of the working fluid in the zone (see Fig.1 

and 2). For the calculation of the efficiency η we make the pessimistic assumption 

that Atransl can only be taken into account when calculating the heat supplied to the 

system. In our calculation, this work does not contribute to the energy that can be 

supplied by the system. 

A4. For compressible fluids there is a 4
th

 task. In phase 3 for isothermal deceleration of 

rotation, the heat must also supply the expansion energy of the compressible 

medium. This task is not applicable for incompressible working media. 

For the efficiency   of the RS machine with incompressible working fluid the 

following applies: 
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Formulas (14) - (19) show that the efficiency is dependent not only on the temperatures 

T1 and T2, but also on the angular velocity ω1 or frequency F1 as well as the material data. 

By the practical application of formulas (4) - (19), it can be easily shown (s. figure 4) for 

many combinations of ω1, T1, and T2, that the efficiency η is greater than the Carnot limit. 

Because the gained energy deltaEk and the work Atransl are quadratically dependent on 

frequency F1, converges with increasing frequency F1 to a value that is less than 1, but can 

still be greater than Carnot's. The real liquids are compressible. Formula (19) can therefore 

only be used for rough estimates of the efficiency values. 

Formula (19) has to be modified for calculating the efficiency. 

Our calculations for compressible fluids are based on the following formula: 
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P1, P2 - different pressure values, 

T1, T2 - different temperatures, 

ρ - pressure and temperature dependent density, 

α - thermal expansion coefficient, 

ϰ – Compressibility coefficient. 

Assumption: The parameters α and ϰ are considered constant. Formula (20) can be seen 

as a substitute for the state equation of the liquid. 



In order to calculate the location dependency of the density, we divided the total volume 

of the liquids into N sub-regions (cylinder shells) of the same mass. In our test examples it 

was found sufficient to take N = 30 and 40 radial zones, respectively. When the 

temperature or ω changes, only the boundaries between the subareas shift. Pressure in the 

radial zones is location-dependent and increases in the direction of the outer edge by the 

own weight of the liquid in the radial zone. 

For the efficiency calculation the following applies: 
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Let us call Ekompr the necessary energy for the compression of the liquid in the phase 1 

and as Edekompr the releasing energy in the expansion of the liquid in phase 3. In the counter 

of the fraction in equation (21) is the total energy that can be taken from the system in one 

cycle. In the denominator is the total heat required to be supplied to the system in one cycle. 
 

Advantages of the RS machine: 

• Efficiency is much better in many situations than according to Carnot 

• Numerous designs and optimisation options are possible (e.g. geometry, material 

selection, rotational speed) 

• Use of small temperature differences 

• Regeneration possibility of the used heat reservoir by the heat supply from the 

environment 

• In principle, a new energy source (as perpetuum mobile of 2nd type) 

• A technically possible use of the water-ice anomaly. When freezing water, the water can 

only expand in the direction of the rotational axis. 
 

Disadvantages of the RS machine: 

• Very high rotational speeds are necessary (see figures 4 and 5), but possible in the 

context of today's technology. 

• Isothermal acceleration (phase 1) and deceleration of the rotation (phase 3) may be very 

slow. 

• Special materials recommended (maximum thermal expansion and low compressibility) 

• Other operation than with conventional heat engines - isothermal acceleration of 

rotation at temperature T1 (phase 1) and isothermal deceleration of the rotation at 

temperature T2 in phase 3.   

• Heat supply with an angular momentum as constant as possible (phase 2) 

• In order to simplify the calculations, we assume that in phase 4 the working fluid is 

cooled from temperature T2 to temperature T1 without performing work. 
 

Further development possibilities: 

• The use of the phase change (liquid gas, solid phase gas) 

• Use of residual heat at the end of phase 3 

• Heating the working fluid without heating the whole container 

• Optimising the geometry 

 



6 Proposal for verifying the theory 

The container with the working fluid must be accelerated at temperature T1 to the angular 

velocity ω1. The necessary energy E1 for this is measured. Then the system must be heated 

to temperature T2 at a constant angular momentum. We call the heat necessary for this Q2. 

After this in phase 3, the rotation is completely decelerated to ω = 0 at a constant 

temperature T2. The energy E3 with drawn from this and the amount of Q3  supplied is 

measured. 

The heat Q2 and Q3 should be obtained from a heat reservoir with the temperature T2 . 

For test purposes only, the required amount of heat could be generated electrically or 

chemically directly in the system. 

The efficiency can be determined from the measured data (see equation (22)). 
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The internal structure of the RS machine does not have to be known for measuring the 

efficiency! 

7 Some computed results 

Table 1. Common input data for all test calculations 

Working fluid: diethyl ether 

Density: 738 kg m3 at 273 degrees K. 

Compressibility ϰ 1.84E-09 /GPa 

Thermal expansion coefficient α 0.00162/deg K 

Specific heat of the liquid Cv: 2310 J/(Kg. degree K) 

Material of container: aluminium 

Density: 2700 Kg/m3 

Specific heat Cvcont 896 J/(Kg . degree K) 

 

Other data for the calculation: Ra = 0.5;  H = 0.4; D = 0.015. 



Fig. 4. Efficience dependence from ω1 for various coefficients of compressibility and for 

incompressible fluid, T2=290 

Input data for calculation: Ra=0,5; H=0,4; D=0,015; T2=290; various values of kappa. 

In Fig. 4 and 5 Carnot’s limits were drawn as horizontal lines (horizontal means 

independent from ω1 ). The maximum of the efficiency curve can be clearly above the 

Carnot’s limits (e.g. for the temperatures T2 = 275 and 290 K). For all ω1 from interval 

[UGR, OGR], the calculated efficiency is greater than the Carnot’s limit. 

Table 2. Some important parameters of ω1-dependence curves of efficiency, from figure 5 

Temperature T2 320 300 290 275 

Eta Carnot 0,146875 0,09 0,058621 0,007273 

Eta RS machine max. value 0,11720 0,08758 0,06882 0,02296 

Eta max at ω1 approximately 4076 3100 2575 1275 

Angular speed ω1, UGR no solution no solution 1700 475 

Angular speed ω1, OGR no solution no solution 4400 5550 
 

Input data for the calculation: Ra = 0.5;  H = 0.4;  D = 0.015; kappa=1.84E-09 

 
 

  



 

 

Fig. 5. Efficiency dependence of ω1 for different temperatures T2, comparison with Carnot’s limit 

Input data for the calculation: Ra = 0.5m; H = 0.4m; D = 0.015m; Kappa = 1.84E-09. 

Figures 4-5 show that the efficiency of an RS machine increases as a function of the 

angular velocity ω1 up to a maximum value. Reducing it after achieving maximum 

efficiency is thereby explained because the difference (Edekompr - Ekompr) increases in 

comparison to the energy growth in phase 2. For the increasing rotational frequency ω1, the 

RS machine is more similar to conventional heat engines in terms of efficiency. 

At the temperature T2 = 320 and T2=300 K (s. the figure 5), the Carnot limit cannot be 

exceeded only by the change of ω1, at constant value of other selected parameters Ra, MFlu, 

height H and wall thickness of the container D. 

Exceeding the Carnot’s limit is easier at low temperature T2 (at low Carnot’s limit) than 

at higher temperature T2 (see. figure 5). 

  



Conclusion 

What makes it possible to say that even heat engines with a better efficiency than Carnot 

are possible? 

In the patent application, the basic principle of RS machine has been presented. The 

efficiency of this machine can be described through formulas, which are transparent, trivial, 

and comprehensible. It is an attempt to simulate the working cycle of the RS machine. The 

simulation of the processes in nature is now a standard tool in natural science and in 

technology. 

The most important feature of this simulation is that the efficiency of the RS machine is 

explicitly dependent on the rotational speed ω. It is by no means possible to eliminate the 

parameter ω. The calculations carried out show that the calculated efficiency can clearly 

exceed the Carnot’s limit in many situations. 

In combination with an ideal heat pump, it is possible to extract heat from the 

surroundings and convert it into mechanical work. 
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