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Abstract. Content of the paper is oriented to calculation of elastic normal stress in 

the Functionally Graded Beams (FGM). Spatial variation of material properties is 

considered in the lateral, transversal and longitudinal direction of the straight beam. 

The displacements and internal forces are calculated using our new FGM finite beam 

element. Heterogeneous material properties are homogenized by extended mixture 

rules, laminate theory and reference volume element (RVE). Obtained results by our 

approach are evaluated and compared with the ones obtained by the 3D solid finite 

elements. 
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1 Introduction 

Many papers deal with static analysis of the FGM single 2D beams with transverse 

variation of material properties only [1-5]. Less attention is paid to longitudinal and lateral 

variation of material properties. However, the authors did not find papers which 

consequently deal with all the longitudinal, transversal and lateral variation of material 

properties by single beams or beam structures built of such FGM. 

The presented contribution is the continuation of our previous work dealing with the 

derivation of a 3D FGM beam finite element with longitudinal varying effective material 

properties, which is suitable for analysis of beam structures made of spatially varying FGM. 

Effect of the axial and shear forces and Winkler elastic foundation is included, as well. 

Homogenization of the spatial varying material properties in the real FGM beam and the 

calculation of effective parameters are done by the multilayer or direct integration method 

(MLM or DIM) [6]. If only transversal and lateral variations of material properties are 

considered in the real FGM beam, longitudinally constant effective material properties arise 

from the homogenization. This method can also be used in the homogenization of 

multilayer beams with discontinuous variation of material properties in transversal and 

lateral direction. Numerical experiments are performed to calculate the elastostatic response 

of chosen spatial FGM beam structures with rectangular cross-sections with symmetrically 

lateral, transversal and longitudinal variations of material properties. Expressions for 

normal stress calculation in the cross-section caused by the axial force as well by the 
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bending moments are established. For torsional loading only the twist angle and internal 

torsional moment is evaluated. The solution results are discussed and compared to those 

obtained by means of very fine 3D – solid finite element mesh. 

2 3D FGM beam finite element with spatially varying material 
properties 

Let us consider a 3D straight finite beam element (Timoshenko beam theory and Saint-

Venant torsion theory) of doubly symmetric cross-section – Fig. 1. The nodal degrees of 

freedom at node i are: the displacements ui, vi, wi in the local axis direction x, y, z and the 

cross-sectional area rotations – i,zi,yi,x ,,  . The degrees of freedom at the node j are 

denoted in a similar manner. The internal forces at node i are: the axial force Ni, the 

transversal forces i,yR  and i,zR , the bending moments i,yM  and i,zM , and the torsion 

moment i,xM . The first derivative with respect to x of the relevant variable is denoted with 

an apostrophe “´”. 

 

Fig. 1. The local internal variables and loads 

Furthermore,  xnn xx   is the axial force distribution,  xqq zz   and  xqq yy  are 

the transversal and lateral force distributions,    xmm,xmm yyxx  and  xmm zz  are the 

distributed moments, A is the cross-sectional area, Iy and Iz are the second area moments, 

zyp III   is the polar area moment, 

         xkk,xkk,xkk,xkk,xkk zzyyzzyyxx    are the elastic foundation modules 

(the torsional elastic foundation is not considered). The effective homogenized and 

longitudinally varying stiffness reads:  AxEEA NH

L  is the axial stiffness (   NH

L

NH

L ExE 

is the effective elasticity modulus for axial loading),   y

HM

Ly IxEEI y  is the flexural 

stiffness about the y-axis (   HM

L

HM

L
yy ExE  is the effective elasticity modulus for bending 



about axis y),   z
HM

Lz IxEEI z  is the flexural stiffness about the axis z, (   HM

L

HM

L
zz ExE  is 

the effective elasticity modulus for bending about axis z),   AkxGAG sm

y

H

Lyy   is the reduced 

shear stiffness in y – direction (   H

Ly

H

Ly GxG   is the effective shear modulus and sm

yk is the 

average shear correction factor in y – direction),   AkxGAG sm

z

H

Lzz   is the reduced shear 

stiffness in z – direction (   H

Lz

H

Lz GxG  is the effective shear modulus and 
sm

yk  is the average 

shear correction factor in z – direction),   T
HM

L IxG x   is the effective torsional stiffness 

(   HM

L

HM

L
xx GxG   is the torsional elasticity modulus and TI  is the torsion constant). 

Mixture rules are one of the methods for micromechanical modeling of heterogeneous 

materials. Extended mixture rules [7] are based on the assumption that the constituents 

volume fractions (formally only denoted here as fibres – f and matrix – m) continuously 

vary as polynomial functions,  z,y,xv f  and  z,y,xvm . The condition 

    1 z,y,xvz,y,xv mf has to be fulfilled. The appropriated material property distribution 

in the real FGM beam (Fig. 2a.) then reads 

          z,y,xpz,y,xvz,y,xpz,y,xvz,y,xp mmff   (1) 

Here,  z,y,xp f and  z,y,xpm  are the spatial distributions of material properties of 

the FGM constituents. The extended mixture rule (1) can be analogically used for FGM 

material made of more than two constituents. The assumption of a polynomial variation of 

the constituent’s volume fractions and material properties enables an easier establishing of 

the main appropriated field equations and allows the modeling of many common realizable 

variations.  

In literature and in practical applications, mostly the one directional variation of the 

FGM properties is considered. There, an exponential law for transversal variation of the 

constituents volume fractions is often presented, e.g. in [8, 9, 10] and in references therein. 

For the FGM beams the transversal variation (continuously or discontinuously, 

symmetrically or asymmetrically) has been mainly considered. The homogenization of such 

material properties variation is relatively simple. If the material properties vary only with 

respect to the longitudinal direction, the homogenization is frequently not needed since 

there are new FGM beam and link finite elements established that consider such variations 

in a very accurate and effective way, e.g. in [6, 11]. A more complicated case is, if the 

material properties vary in three directions - namely in transversal, lateral and longitudinal 

direction of the FGM real beam and the torsion is included as well. 

In this contribution, the homogenization techniques for spatially varying (continuously 

or discontinuously and symmetrically in transversal and lateral direction, and continuously 

in longitudinal direction) material properties of FGM beams of selected doubly-symmetric 

cross-sections are considered. The expressions are proposed for the derivation of effective 

elasticity modules for axial loading, the transversal and lateral bending, the shear modules 

for transversal and lateral shear and for uniform torsion by the extended mixture rules 

(EMR) and the multilayer method (MLM). 

Let us consider a two nodded 3D straight beam element with double symmetric cross-

sectional area A (Fig. 2). The composite material of this beam arises from mixing two 

components. The continuous polynomial spatial variation of the elasticity moduli and mass 

density can be caused by continuous polynomial spatial variation of both the volume 

fraction (  z,y,xv f  and  z,y,xvm ) and material properties of the FGM constituents (

 z,y,xp f  and  z,y,xpm ).  



In our case the elasticity modulus E(x,y,z), the Poisson ratio for the real beam have been 

calculated by expression (1). The FGM shear modulus can be calculated by expression: 

  
 
  z,y,x
z,y,xE

z,y,xG



12

. (2) 

If the constituents Poisson’s ratio are approximately of the same value and the 

constituent volume fractions variation is not strong, then the FGM shear modulus can by 

calculated using a simplification [12]: 
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Fig. 2. FGM beam with rectangular cross-section 

Homogenization of the spatially varying material properties (the reference volume is the 

volume of the whole beam) are done in two steps. In the first step, the real beam (Fig. 2a) is 

transformed into a multilayer beam (Fig. 2b). Material properties of the layers are 

calculated with the EMR [13]. We assume that each layer cross-section at position x has 

constant material properties. They are calculated as an average value from their values at 

the boundaries of the respective layer cross-section. Polynomial variation of these 

properties appears in the longitudinal direction of the layer. Sufficient accuracy of the 

proposed substitution of the continuous transversal and lateral variation of material 

properties by the layer-wise constant distribution of material properties is reached if the 

division to layers is fine enough. In the second step, the effective longitudinal material 

properties of the homogenized beam are derived using the MLM [14]. These homogenized 

material properties are constant through the beam’s height and depth but they vary 

continuously along the longitudinal beam axis. Accordingly, the beam finite element 



equation is established for the homogenized beam (Fig. 2c) in order to calculate the primary 

beam unknowns – the displacements and internal forces and critical buckling force in our 

case. The stress has to be calculated on the real beam and it is the main goal of this paper 

that will be presented in the next chapter. 

3 Normal stress calculation in the FGM rectangular cross-
sectional area 

Stress calculation depends of the cross-sectional area form. In the next we focus on the 

calculation of normal stress distribution on rectangular cross section. Calculation of the 

shear and torsional stress in the FGM beams is more complicated in our approach. We deal 

with this task very active and the results will be published in our future publication. 

The rectangular cross-section at position x with doubly symmetric variation of material 

properties is considered - Fig. 3. At the centroid acts the normal force  xN , the bending 

moments  xM y  and  xM z . bhA  is the cross-sectional area, 123bhI z   and 

123hbI y  are the quadratic moments of the rectangular cross-section. 

 

Fig. 3. To normal stress calculation 

The resultant normal stress at point (x,y,z) is the sum: 

        z,y,xz,y,xz,y,xz,y,x yz
MMN    (5) 

There,      
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z,y,xExz,y,x

NH

L

N
NN 

   is the normal stress caused by 

normal force and  
 
A

xN
xN   is the effective normal stress in homogenized cross-section 

while constant effective normal strain  
 
 xE

x
x

NH

L

N
N 

   over the whole cross-sectional area 

is assumed. Here  xE NHL  is the effective elasticity modulus for tension-compression [7]. 

If the effective bending stiffness about the axis z is    xEIxD zM

Lzz  , then the 

distribution of the effective bending strain is  
 
 
y

xD

xM
y,x

z

zM z  and the effective bending 

stress is      xEy,xy,x zzz M

L

MM   . The real bending stress at position  z,y,x  is
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elasticity modulus for bending about z-axis [7]. 

Analogically, if the effective bending stiffness about the axis y is    xEIxD yM

Lyy  , then 

the distribution of the effective bending strain is  
 

 
z
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xM
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yM y   and the effective 

bending stress is      xEz,xz,x yyy M

L
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  . The real bending stress at position  z,y,x  is 
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xE

z,y,xE
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y

yy M
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  . Here,  xE yM

L  is the effective 

elasticity modulus for bending about z-axis [7]. It is not simply obtaining functional 

distribution of the normal stress. For discontinuous variation of the material properties in 

transversal and lateral direction, the stress has to be calculated at discrete points of cross-

section. 

4 Numerical experiments 

In the chapter, the results of numerical investigations concerning the normal stress 

calculation in the FGM beams with spatially varying material properties are presented. 

4.1 Normal stress calculation in the FGM cantilever beam 

The cantilever FGM beam is considered (as shown in Fig. 4), which is loaded at its free end 

by forces 10 zy FF N and 5xF kN and by torsion moment 10xM Nm. Its 

rectangular cross-section is constant with height h = 0.005 m and width b = 0.01 m. The 

length of the beam is L = 0.1 m. The local coordinates system is denoted by the axis x, y, z. 

 

Fig. 4. Cantilever FGM beam with spatial variation of material properties 

Material of the beam consists of two components: Aluminum Al6061-TO – denoted 

with index m and Titanium carbide TiC –denoted with index f. The material properties of 

the components are assumed to be constant and their values are: Aluminum Al6061-TO – 

the elasticity modulus 069.Em  GPa, the Poisson’s ratio 330.m  ; Titanium carbide TiC 

– the elasticity modulus 0480.E f  GPa, the Poisson’s ratio 200.f  . 

The TiC volume fraction varies in the y and z direction linearly and symmetrically 

according to the x-y and x-z planes:       10
2
2

0
0 







/bz
/hyf

z
yf z,yv,z,yv - the core of the beam 



is made from pure Al6061-TO and linearly varies to the edges that are made from pure TiC. 

Constant effective material properties are considered in the local x – direction of the beam. 

The average shear correction factors in y – direction 65 /k smy   and in z – direction 

65 /k smz  have been considered (constant Poisson ratio has been assumed in the example). 

Using the EMR and MLM, the homogenized elasticity modules (in [GPa]) for: axial 

loading - NH

LE 342.8 MPa, bending about axis y and z - 
HM

L

HM

L
zy EE 397.5 MPa, shear 

-  H

Lz

H

Ly EG 138.9 MPa, and torsion - 
HM

L
xG 162.6 MPa have been calculated [15].  

The FGM beam, clamped at the node i, has been studied by the elastic-static and 

buckling analysis. All the calculations were done with our 3D FGM beam finite element 

(NFE) which we have implemented into the code MATHEMATICA [16]. Additionally, the 

effect of axial force was considered. It has to be pointed out that the entire structure is 

discretized using only one our finite element. The critical buckling force is 2810.N II

Ki  kN. 

In the elasto-static analysis the axial force (tension and compression) NN II  have been 

chosen as a part of the critical buckling force II

KiN . The same problem has been solved 

using a very fine mesh – 28889 of SOLID186 elements of the FEM program ANSYS [17]. 

The results of ANSYS as well as the results of the NFE are presented in Table 1. The 

average relative difference  [%] between displacements calculated by our method and the 

ANSYS solution has been evaluated. 

Table 1. Displacements and rotations at the free beam end 

Displacements 

[mm], [rad] 

NFE 

Fx = 0 N 

ANSYS 

Fx= 0 N 
 [%] 

NFE 

Fx=-5kN 

ANSYS 

Fx=-5kN 
 [%] 

uj

 
0 0 --- -0.029230 -0.029385 0.53 

vj

 
0.020349 0.020271 0.38 0.022281 0.022173 0.49 

wj

 
0.080879 0.080645 0.29 0.158012 0.157130 0.56 

xj

 
0.021533 0.021844 1.42 0.021534 0.021185 1.47 

yj

 
-0.001211 -0.001206  0.43 -0.000346 0.000344 0.75 

zj

 
0.000303 0.000302  0.03 0.002417 0.002410 0.26 

 

As is shown in Table 1, the accuracy of our results is excellent compared to the ANSYS 

solution. The bending moments about the y and z – axis, the torsional moment, the axial, 

transversal and shear forces are calculated. To save space, the distribution of the bending 

moment about y-axis is shown in Fig. 5 only. As expected, the axial force xF  influence 

distribution of the bending moment significantly. The high efficiency of our method (NFE) 

is obvious since our results are evaluated using only one finite beam element compared to 

the large number of 41924 elements used in the continuum mesh (ANSYS).  

 

 

Fig. 5. Bending moment about the y - axis 



Due to stress calculation, the internal forces at the clamped end  0x   are evaluated 

and they are: 10xM  Nm; 781.M y  Nm; 121.M z  ; 5xN kN; 10 zy QQ N. 

According the expressions in chapter 2, the normal stress caused by axial force are 

calculated. Because of discontinuous variation of elasticity modulus in real beam, the cross 

section is discretized on layers with constant elasticity modulus - Fig. 6. 

 

Fig. 6. Compression normal stress distribution caused by the axial force 

The maximal axial force stress are in the layer number 10 and minimal in layer 1 - see 

Table 2. Accuracy of the calculation approach depends of the number of the layers. As 

shown in Table 2, for then layers is the difference between our results (NFE) and the ones 

obtained by very fine mesh of 3D-ssolid FE (ANSYS) very small. By very fine division to 

layers a continuous distribution of the stress can be obtained. 

Table 2. Axial force normal stress at the clamped cross-section 

Layer  
 [kPa] 

NFE  

 [kPa] 

ANSYS  
 [%]  

1  -26175  -27306  4.14  

2  -38189  -39277  2.70  

3  -50203  -51144  1.84  

4  -62216  -62949  1.16  

5  -74230  -74762  0.71  

6  -86244  -86492  0.29  

7  -98258  -98255  0.01  

8  -110272  -110170  0.09  

9  -122285  -121890  0.32  

10  -134299  -134060  0.18  



Distribution of the bending normal stress is shown in Fig. 7 and Table 3. 

 

Fig. 7. Resultant biaxial bending normal stress calculated by ANSYS 

Table 3. Comparing of the biaxial bending normal stress at chosen position in clamped cross-section 

Position  
 [kPa] 

NFE  

 [kPa] 

ANSYS  
 [%]  

y = 0, z = 0 0 0 0 

y = 0, z = -h/2 290594 290820 0.08 

y = 0, z = h/2  -290594 -290820 0.08 

y = -b/2, z = 0 145297 146500 0.83 

y = b/2, z = 0  -145297 -146500 0.83 

y = -b/2, z = -h/2 435891 450900 3.44 

y = b/2, z = h/2  -435891 -450900 3.44 

y = b/2, z = -h/2 145297 139170 4.22 

y = -b/2, z = h/2  -145297 -139170 4.22 

3.2 Normal stress calculation in the FGM cantilever beam on elastic 
foundation 

The cantilever FGM beam on varying Winkler foundation is considered (as shown in 

Fig. 8). Its rectangular cross-section is constant with height h = 0.005 m and width b = 

0.01 m. The length of the beam is L = 0.1 m.  

 

Fig. 8. Cantilever beam on elastic foundation with spatially varying material properties 

The beam is made of a mixture of two components: Aluminum Al6061-TO and 

Titanium Carbide TiC, their constant constituent’s material properties are given in Case I. 

The Aluminum volume fraction, in this case, varies linearly and symmetrically according to 



the x–y and x–z planes: At node i is       01
2
2

0
0 







/bz
/hyfi

z
yfi z,yv,z,yv  and then vary 

continuous linearly in the longitudinal direction to the constant value at node j ( 1fiv ). 

Using EMR and MLM with n = 20 layers the effective elastic modulus for axial loading 
NH

LE , for bending about axis y - 
HM

L
yE and about axis z - HM

L
zE , shear modules H

LyG and H

LzG

and torsional shear modulus HM

L
xG . 

   x..xENHL 0953731109342   GPa; 

     x..xExE
HM

L

HM

L
zy 2933274429396   GPa;  

     x..xGxG H

Lz

H

Ly 4181129581138   GPa;  

   x..xG
HM

L
x 9361362233162   GPa. 

The FGM cantilever beam has been studied by elastic-static analysis. All the 

calculations were done with our 3D FGM beam finite element (NFE). Additionally, the 

effect of axial force was considered. It has to be pointed out that the entire structure is 

discretized using only one herein proposed finite element. The cantilever FGM beam 

resting on varying vertical Winkler elastic foundation 2600000300005000 xxk y 

kN/m2 is loaded by forces 50 zy FF N and 2xF kN at node j (Fig. 9). The average 

shear correction factors in 
,y – direction 65sm

yk  and in ,z  – direction 65sm

zk are used 

[12]. The displacements at node j are evaluated using the only one new FGM beam finite 

element (NFE). The same problem is solved using a very fine mesh – 23015 of SOLID186 

elements of the FEM program ANSYS [18 34]. The results of ANSYS as well as the results 

of the NFE are presented in Table 4. The average relative difference  [%] between 

displacements calculated by our method and the ANSYS solution is evaluated. 

 

Fig. 9. Loaded FGM beam 

Table 4. Displacements at node j with and without elastic foundation 

Displacement

s at node j 

[mm], [rad] 

NFE 

with  

foundation 

ANSYS 

with  

foundation 

NFE 

without 

foundation 

ANSYS 

without 

foundation 

ju  -0.02445 -0.02507 -0.02445 0.02507 

jv  0.24641 0.24933 0.74414 0.75348 

jw  0.14452 0.14791 0.14452 0.14791 

yj  -0.00247 -0.00256 -0.00247 -0.00256 



Displacement

s at node j 

[mm], [rad] 

NFE 

with  

foundation 

ANSYS 

with  

foundation 

NFE 

without 

foundation 

ANSYS 

without 

foundation 

ju  -0.02445 -0.02507 -0.02445 0.02507 

jv  0.24641 0.24933 0.74414 0.75348 

jw  0.14452 0.14791 0.14452 0.14791 

zj  0.00503 0.00527 0.1304 0.01321 

 
The comparison of the vertical beam deflection curve with and without elastic 

foundation is shown in Fig. 10. 

 

Fig. 10. Vertical beam deflection curve with and without elastic foundation 

The bending moments about the y and z – axis for case without elastic foundation are 

shown in Fig. 11 and Fig. 12, respectively. The Fig. 13 and Fig. 14 show the transversal 

force in y and z – axis. The comparison of the bending moments  0xM y ,  0xM z  and 

transversal forces  LxRy  ,  LxRyz   for the case Fx = -2 kN calculated by our approach 

and by ANSYS are compared in Table 5. 

 

Fig. 11. Bending moment about the y – axis (without elastic foundation) 

 

Fig. 12. Bending moment about the z – axis (without elastic foundation) 



 

Fig. 13. Transversal force in y – axis (without elastic foundation) 

+  

Fig. 14. Transversal force in z – axis (without elastic foundation) 

Table 5. Bending moments and transversal forces 

Internal variables 
NFE 

Fx = -2 kN 

ANSYS 

Fx = -2 kN 
 [%] 

 0xM y  [Nm] -5.2182 -5.2416 0.45 

 0xM z  [Nm] 6.4691 6.4404 0.45 

 LxRy   [N] 54.9472 55.0873 0.25 

 LxRz   [N] 76.2088 76.2251 0.02 

In Table 6 the comparison of the resultant normal stress, caused by axial, transversal and 

lateral forces, in the clamped cross-section (x = 0) calculated by our approach (Fig. 15) and 

by ANSYS is shown.  

Table 6. Comparison of the normal stress at chosen position in clamped cross-section 

position 
 [kPa]  

NFE 

 [kPa] 

ANSYS 

y = h/2, z = b/2 -320.40 -324.21 

y = -h/2, z = -b/2 208.20 209.35 

y = h/2, z = b/2 -245.20 -249.32 

y = 0, z = -b/2 19.80 21.56 

y = h/2, z = 0 -245.20 -249.32 

y = -h/2, z = 0 131.50 136.22 



 

Fig. 15. Resultant normal stress ),,( zyx [MPa] at position x = 0 calculated by our approach 

In Fig. 16, the resultant normal stress, caused by axial, transversal and lateral forces 

(marked in blue flags), in the clamped cross-section is shown that was calculated by 

ANSYS (using a very fine mesh – 23015 of SOLID186). As can be seen, a very good 

agreement of both solution method has been obtained at all marked points excluding the 

corners. As is well known, the solutions with 3D solid finite elements produce in the sharp 

corners incorrect stress first of all by the very fine meshes. In the nearby points of the sharp 

corners is the match of the results very good (see the details in Fig. 16). 

 

Fig. 16. Normal stress ),,( zyx [MPa] at position x = 0 calculated by ANSYS (SOLID186) 

Conclusions 

In this contribution, our new 3D beam finite element for elasto-static and buckling analysis 

of the FGM single beam and beam structures has been used for calculation of the 

deformation and internal forces and moments in FGM beams with spatial variation of 

material properties. Effect of varying Winkler elastic foundations and shear force 

deformation effect is taken into account. The effect of axial force has been taken into 

account for the flexural loading. For an elastic-static analysis, the expressions for 



distribution of normal stress on the beam cross-section is established and applied. The 

obtained results have been studied and compared with results obtained using very fine 

continuum and beam meshes by the FEM program ANSYS. An excellent agreement of our 

solution results is obtained, which confirms respectable accuracy and effectiveness of our 

approach. 
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